×
10.07.2015
216.013.5b67

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО МАТЕРИАЛА (ВАРИАНТЫ) ДЛЯ ПЕРЕЗАРЯЖАЕМЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (CHN)*xVO*yHO, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м/г и диаметром пор 20-30 нм. Также изобретение относится к вариантам получения материала. Предложенный материал обладает улучшенными механическими свойствами, высокой удельной электрохимической емкостью и стабильностью во времени. 2 н. и 1 з.п. ф-лы, 2 пр., 4 ил.

Область техники, к которой относится изобретение

Изобретение относится к неорганической химии и может быть использовано в качестве активного материала катода состава (C5H4N)*xY2O5*yH2O, где х=0.10-0.12, y=0.7-0.9. Преимущество полученного материала заключается в том, что он обеспечивает стабильные электрохимические характеристики вторичного литий-ионного источника тока при высоком значении электрохимической емкости по литию.

Уровень техники

Одним из подходов для получения активного материала катода является использование гибридных материалов из проводящих полимеров, встроенных в неорганическую слоистую структуру.

Образование гибридных материалов из проводящих полимеров, встроенных в матрицу V2O5, происходит при интеркаляции молекул соответствующих мономеров в неорганическую слоистую структуру. Сильный окислительный характер оксида вызывает окислительно-восстановительную полимеризацию органических молекул. Следует отметить, что, в то время как встроенный полимер претерпевает частичное окисление, V2O5 частично восстанавливается, в результате чего он превращается в оксид со смешанной степенью окисления ванадия VIV/VV, электронная проводимость которого выше, чем у исходного V2O5.

Хорошо известно сродство V2O5 к интеркалированным азотсодержащим координационным соединениям и органическим лигандам. Для того чтобы использовать органическую добавку для улучшения электрохимического ответа, требуется наличие двух характеристик: (1) добавка должна содержать азотсодержащую группу для обеспечения взаимодействия со слоями оксида ванадия и приводить к раздвиганию слоев, и (2) содержать функциональную группу, которая стимулирует полимеризацию, например группа сульфоновой кислоты.

В работе (Wong, H. P., Dave, В. С., Leroux, F., Harreld, J„ Dunn, В., & Nazar, L. F. Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels. Journal Of Materials Chemistry, 8(4), 1019-1027, 1998) рассматривается использование гибридных материалов на основе nonmmppona/V2O5. Композит был получен путем полимеризации пиррола с использованием V2O5, диспергированного в растворе хлорной кислоты HClO4, выступающей окислителем. При этом происходит одновременная полимеризация и осаждение гибридного материала, а также существенно увеличивается зарядно-разрядная емкость по сравнению с гибридными материалами, полученными без использования кислоты. Разрядная емкость на первом цикле с использованием кислоты составляет 135 мАч/г, тогда как разрядная емкость гибридного материала полипиррол/V2O5, полученного без использования кислоты - 98 мАч/г. Данная методика получения отличается от настоящего изобретения, как по химической природе продукта (составу), так и методике получения.

В патенте (США №8,148,455 Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same) рассматривается способ получения гибридного материала на основе V2O5 и электропроводящего полимера полианилина для использования в качестве катода для литий-ионных источников тока. Предварительно полученный ксерогель V2O5 смешивается с водным раствором хлорида анилиния, итоговая смесь подвергается помолу в планетарной мельнице в течение 8 часов с последующим промытием и высушиванием. Недостатком данной методики, от настоящего изобретения, является невозможность получения материала с пористой морфологией, необходимой для увеличения площади контакта материала катода с жидким электролитом.

Наиболее близкой к предложенному по технической сущности и количеству совпадающих признаков является работа (F. Leroux, В. Е. Коеnе, L.F. Nazar, Electrochemical Lithium Intercalation into a Polyaniline/V2O5 Nanocomposite. Journal Of The Electrochemical Society, 143(9), L181, 1996) по синтезу нанокомпозита полианилинV2O5 для применения во вторичных литий-ионных источников тока. Предварительно полученный ксерогель V2O5 смешивается с прекурсором для получения полианилина, в результате, к полученному раствору полианилин/ V2O5 доваблялся H2O2. Отличия данной методики от предложенной заключается в необходимости пошагового синтеза и невозможностью формирования наносвитков, которые создают необходимую иерархию макро- и микропор.

Совокупность существенных признаков изобретения

Была поставлена задача получения гибридных неоргано-органического материалов с пористой структурой, обладающих улучшенными механическими свойствами на основе гелей оксида ванадия (V) и электропроводящего пролимерного материала - полианилина, что позволит их использовать для создания новых материалов для вторичных литий-ионных источников тока.

Данная задача была решена настоящим изобретением, в частности получением гибридного электродного материала формулой (C6H4N)*xV2O5*yH2O, где х=0.10-0.12, y=0.7-0.9, в виде наносвитков с пористой структурой.

Гибидный материал был получен путем добавления V2O5 и сульфата анилиния к раствору H2O5 (10-20% масс.) при перемешивании с последующим нагреванием смеси до 40°C и выдерживанием, при данной температуре, в течение 1 часа, тем самым в процессе синтеза происходит равномерное распределение полианилина в межслоевое пространство V2O5 и улучшаются механические свойства конечного продукта.

Технический результат

При низких трудозатратах и простом техническом исполнении получен гибридный катодный материал (C6H4N)*xV2O5*yH2O, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков с пористой структурой, которая благодаря высокой площади поверхности позволяет легко контактировать с жидким электролитом, тем самым облегчая интеркаляцию ионов лития в межслоевое пространство пентаоксида ванадия. Использование электроводящего полимерного материала позволяет улучшить механические и транспортные свойства материала при циклировании, и тем самым достигается высокая удельная электрохимическая емкость и ее стабильность во времени.

Детальное описание способа получения

Гибидный материал (C6H4N)*xV2O5*yH2O (х=0.10-0.12, y=0.7-0.9) в виде наносвитков с пористой структурой был получен путем добавления V2O5 и сульфата анилиния к раствору H2O2 (15% масс.) при перемешивании с последующим нагреванием смеси до 40°C и выдерживанием, при данной температуре, в течение 1 часа.

Порядок добавления компонентов можно изменить путем получения геля из пентаоксида ванадия растворением порошка V2O5 в H2O2 (15% масс.) с последующим добавлением сульфата анилиния, при перемешивании, нагреванием смеси до 40°C и выдерживанием при данной температуре в течение 1 часа.

В результате синтеза, после фильтрации, промывки продукта и сушки при температуре 60°C образовывался продукт с пористой микроструктурой в форме наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм (Рис.1а,б) с площадью поверхности 60 м2/г и диаметром пор 20-30 нм (Рис.2).

Данные рентгенофазового анализа показывают (Рис.3), что пики (001) слоистого V2O5 указывают на увеличение межслоевого пространства от 11 до 13,5 А, что соответствует интеркаляции полианилина в межслоевое пространство V2О5 с образованием гибридного органо-неорганического композита.

По данным ТГ-ДТА (Рис.3), первичная потеря массы происходит в диапазоне температур от 55-120°C, что отвечает за дегидратацию образца, вторая - при нагревании до 360°C и отвечает разложению полианилина с последующей кристаллизацией неорганической составляющей. Общая потеря массы в образце составляет 9-12 масс.%, состав композита может быть оценен как (C6H4N)*xV2O5*yH2O, где х=0.10-0.12, y=0.7-0.9.

Для электрохимических исследований активную массу для рабочих электродов готовили смешением 75% активного материала, 20% электропроводящей добавки (ацетиленовой сажи, окисленного графита, углеродных нанотрубок) и 5% поливинилидендифторида (Aldrich), растворенного в N-метилпирролидоне (Aldrich).

Гомогенизизацию электродной массы проводили путем ультразвуковой обработки в течение 10 мин. Готовую массу наносили равномерным слоем на одну сторону токоподвода, изготовленного из сетки из нержавеющей стали (сетка толщиной 0.05 мм). Для удаления N-метилпирролидона электроды сушили в сушильном шкафу при температуре 90°C в течение 5 часов. Далее электроды прессовали с усилием 500 кг/см2 в течение 30 сек, после чего повторно сушили в вакууме при температуре 120°C-240°C в течение 8-12 часов для удаления следов воды. Количество активного вещества на электродах размером 1.0 см × 1.0 см составляло 20-25 мг.

Противоэлектрод и электрод сравнения готовили путем накатки тонких литиевых полос (литий марки ЛЭ-1) на никелевую сетку с приваренным к ней токоподводом из никелевой фольги.

Испытания электродов (регистрация зарядно-разрядных кривых и циклических вольтамперограмм) проводили в герметичных тефлоновых ячейках плоскопараллельной конструкции, содержащих рабочий электрод, один или два противоэлектрода и электрод сравнения. Все операции по сборке макетов элементов проводили в перчаточном боксе с атмосферой аргона Labconco Protector CA. Содержание паров воды и кислорода в атмосфере бокса не превышало 5 милионных долей. В качестве электролита использовали 1 М раствор LiClO4 (Aldrich, battery grade) в смеси пропиленкарбоната (Aldrich, anhydrous) и 1,2-диметоксиэтана (Aldrich, anhydrous) (7:3 по объему). Содержание воды в этих электролитах, измеренное по Фишеру (684 KF-Coulometer, Metrohm), не превышало 50 ppm. Все электроды разделялись сепараторами из пористого полипропилена марки ПОРП (НПО «Уфим», Москва).

Ток заряда/разряда составлял 20 мА/г.Скорость развертки потенциала составляла 130 мкВ/с. Диапазон потенциалов циклирования ячеек составлял 2.0-4.0 В (в сравнении с Li/Li+).

Начальная разрядная емкость электрода составила около 240 мАч/г. Скорость падения удельной емкости после 20 цикла уменьшается до 1,3 мАч/г за цикл и обуславливается протеканием изменением структуры вещества и образованием «паразитного слоя» на поверхности катодного материала (Рис. 4).

Изобретение иллюстрируется следующими рисунками и примерами.

Рис. 1. Микрофотографии получаемого гибридного материала.

Рис. 2. Распределение пор по размеру для образца, рассчитанное из данных капиллярной адсорбции азота.

Рис. 3. Дифрактограмма гибридного материала (C6H4N)*xV2O5*yH2O. Вставка: кривые термического анализа, полученные при политермическом нагреве исходных продуктов синтеза.

Рис. 4. Емкость гибридного материала при цикловании. Вставка: циклическая вольтамперограмма, скорость развертки потенциала 130 мкВ/с.

Пример 1.

Смесь прошков V2O5 и сульфата анилиния, взятых в мольном соотношении 1:0.1-0.5, добавляется к раствору H2O2 (15% масс.) при перемешивании с последующим нагреванием смеси до 40°C и выдерживанием при данной температуре в течение 1 часа. После охлаждения до комнатной температуры темно-зеленые хлопья осадка отфильтровываются, промываются дистиллированной водой и высушиваются при 60°C в течение суток на воздухе. Свойства полученного материала представлены на Рис. 1-4.

Пример 2.

К 30 мл раствора H2O2 (10-20% масс.) добавляется при перемешивании 0.5 г порошка пентаоксида ванадия. После формирования геля V2O5 к раствору медленно добавляется сульфат анилиния в мольном соотношении 1:0.1-0.5 моль. Смесь нагревается до 40°C и выдерживается, при данной температуре, в течение 1 часа. После охлаждения до комнатной температуры темно-зеленые хлопья осадка отфильтровываются, промываются дистиллированной водой и высушиваются при 60°C в течение суток на воздухе. Свойства полученного материала представлены на Рис. 1-4.

Материал, предложенный в настоящем изобретении, представляет большой интерес для использования в качестве активного катодного материала для вторичных литий-ионных источников тока. Интерес определяется высокими электрохимическими свойствами с емкостью более 240 мАч/г и стабильностью при циклировании.


СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО МАТЕРИАЛА (ВАРИАНТЫ) ДЛЯ ПЕРЕЗАРЯЖАЕМЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО МАТЕРИАЛА (ВАРИАНТЫ) ДЛЯ ПЕРЕЗАРЯЖАЕМЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО МАТЕРИАЛА (ВАРИАНТЫ) ДЛЯ ПЕРЕЗАРЯЖАЕМЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО МАТЕРИАЛА (ВАРИАНТЫ) ДЛЯ ПЕРЕЗАРЯЖАЕМЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 116.
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31fd

Способ изготовления материала газового сенсора для детектирования монооксида углерода со без нагревания

Использование: для детектирования монооксида углерода (угарный газ) в воздухе. Сущность изобретения заключается в том, что способ изготовления включает получение нанокристаллических широкозонных полупроводниковых оксидов MeO (SnO, ZnO, InO), получение золей квантовых точек узкозонных...
Тип: Изобретение
Номер охранного документа: 0002544272
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.31fe

Электроаналитическая система на основе биосенсора концентрирующей колонки для определения низких концентраций лактата

Изобретение относится к электроаналитическим системам. Система состоит из двух перистальтических насосов, содержащего петлю инжектора, проточной амперометрической ячейки с включенным биосенсором, потенциостата. В качестве биосенсора электроаналитическая система содержит лактатный биосенсор....
Тип: Изобретение
Номер охранного документа: 0002544273
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3200

Свч-усилитель на основе высокотемпературного сквида с четырьмя джозефсоновскими контактами

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое...
Тип: Изобретение
Номер охранного документа: 0002544275
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40ae

Способ магнитооптической модуляции света с использованием поверхностных плазмонов

Изобретение относится к области физики, в частности к методикам модуляции интенсивности электромагнитного излучения видимого и ближнего ИК диапазонов посредством приложения магнитного поля. Способ модуляции света включает в себя создание магнитоплазмонного кристалла на основе периодически...
Тип: Изобретение
Номер охранного документа: 0002548046
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9d

Штамп для морфологической модификации полимеров, способ его получения и способ формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием

Изобретение относится к области нанотехнологий и касается штампа для морфологической модификации полимеров, способа его получения и способа формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием. Штамп представляет собой пленку пористого анодного оксида...
Тип: Изобретение
Номер охранного документа: 0002550871
Дата охранного документа: 20.05.2015
Показаны записи 71-80 из 143.
20.03.2015
№216.013.31fd

Способ изготовления материала газового сенсора для детектирования монооксида углерода со без нагревания

Использование: для детектирования монооксида углерода (угарный газ) в воздухе. Сущность изобретения заключается в том, что способ изготовления включает получение нанокристаллических широкозонных полупроводниковых оксидов MeO (SnO, ZnO, InO), получение золей квантовых точек узкозонных...
Тип: Изобретение
Номер охранного документа: 0002544272
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.31fe

Электроаналитическая система на основе биосенсора концентрирующей колонки для определения низких концентраций лактата

Изобретение относится к электроаналитическим системам. Система состоит из двух перистальтических насосов, содержащего петлю инжектора, проточной амперометрической ячейки с включенным биосенсором, потенциостата. В качестве биосенсора электроаналитическая система содержит лактатный биосенсор....
Тип: Изобретение
Номер охранного документа: 0002544273
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3200

Свч-усилитель на основе высокотемпературного сквида с четырьмя джозефсоновскими контактами

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое...
Тип: Изобретение
Номер охранного документа: 0002544275
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40ae

Способ магнитооптической модуляции света с использованием поверхностных плазмонов

Изобретение относится к области физики, в частности к методикам модуляции интенсивности электромагнитного излучения видимого и ближнего ИК диапазонов посредством приложения магнитного поля. Способ модуляции света включает в себя создание магнитоплазмонного кристалла на основе периодически...
Тип: Изобретение
Номер охранного документа: 0002548046
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9d

Штамп для морфологической модификации полимеров, способ его получения и способ формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием

Изобретение относится к области нанотехнологий и касается штампа для морфологической модификации полимеров, способа его получения и способа формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием. Штамп представляет собой пленку пористого анодного оксида...
Тип: Изобретение
Номер охранного документа: 0002550871
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.5b28

Композиция для создания органических фотогальванических элементов на основе фталоцианинов и их аналогов

Изобретение относится к композиции для создания органических фотогальванических элементов. Композиция включает электронодонорный компонент и электроноакцепторный компонент. В качестве электронодонорного компонента она содержит моно- или полиядерные фталоцианин или нафталоцианин, или их...
Тип: Изобретение
Номер охранного документа: 0002554877
Дата охранного документа: 27.06.2015
+ добавить свой РИД