×
27.06.2015
216.013.5a9c

Результат интеллектуальной деятельности: ТУРБИННЫЙ АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ

Вид РИД

Изобретение

№ охранного документа
0002554737
Дата охранного документа
27.06.2015
Аннотация: Турбинный аэродинамический профиль содержит тело аэродинамического профиля, систему теплового защитного покрытия, присутствующую в покрытой зоне поверхности, и непокрытую зону поверхности, в которой система теплового защитного покрытия отсутствует. Непокрытая зона поверхности проходит на стороне пониженного давления наружной поверхности тела аэродинамического профиля от задней кромки в направлении передней кромки до линии раздела между покрытой зоной поверхности и непокрытой зоной поверхности. Линия раздела расположена на стороне пониженного давления между передней кромкой и задней кромкой, а тело аэродинамического профиля содержит ступеньку в наружной поверхности, проходящую вдоль линии раздела. Другое изобретение группы относится к турбинной направляющей или рабочей лопатке, содержащей указанный выше турбинный аэродинамический профиль. Группа изобретений позволяет повысить аэродинамические свойства лопатки и срок службы ее аэродинамического профиля. 2 н. и 22 з.п. ф-лы, 3 ил.

Данное изобретение относится к турбинному аэродинамическому профилю, который можно использовать в газотурбинной направляющей лопатке или рабочей лопатке.

Аэродинамические профили газовых турбин обычно выполнены из суперсплавов на основе никеля или кобальта, которые имеют высокую стойкость относительно горячих и коррозийных газов сгорания, присутствующих в газовой турбине. Однако, хотя такие суперсплавы имеют значительную стойкость к коррозии и окислению, высокие температуры газов сгорания в газовой турбине требуют мер для дальнейшего улучшения стойкости к коррозии и/или окислению. Поэтому аэродинамические профили рабочих и направляющих лопаток газовой турбины обычно по меньшей мере частично покрывают системой теплового защитного покрытия для продления стойкости в горячем и коррозийном окружении. Дополнительно к этому, тела аэродинамических профилей обычно являются полыми, что обеспечивает возможность прохождения потока охлаждающей текучей среды, обычно отбираемого от компрессора воздуха, через аэродинамический профиль. Охлаждающие отверстия, имеющиеся в стенках тел аэродинамических профилей, позволяют выходить некоторому количеству охлаждающего воздуха из внутренних каналов с образованием охлаждающей пленки на поверхности аэродинамического профиля, что дополнительно защищает материал суперсплава и нанесенное на него покрытие от горячего и коррозийного окружения. В частности, охлаждающие отверстия имеются у задних кромок аэродинамических профилей, как показано, например, в US 6077036, US 6126400, US 2009/0104356 A1 и WO 98/10174.

Потери на задней кромке являются значительной частью общих потерь на лопатках турбомашины. В частности, толстые задние кромки приводят к более высоким потерям. Поэтому были разработаны охлаждаемые аэродинамические профили со срезанной конструкцией на задней кромке. Эта конструкция реализована посредством удаления материала на стороне повышенного давления аэродинамического профиля из задней кромки на несколько миллиметров в направлении передней кромки. Эта мера обеспечивает очень тонкие задние кромки, которые могут обеспечивать большое улучшение эффективности лопаток. Аэродинамические профили со срезанной конструкцией и тепловым защитным покрытием раскрыты, например, в WO 98/10174 A1 и ЕР 1245786 А2. Однако положительное влияние на эффективность может быть лишь достигнуто, если толщина задней кромки является достаточно малой. С другой стороны, для лопатки с тепловым защитным покрытием суммарная толщина литой стенки аэродинамического профиля и нанесенной системы теплового защитного покрытия превышает оптимальную толщину конструкции. Дополнительно к этому, поскольку скорость потока газа является наибольшей на задней кромке аэродинамического профиля, то тепловое защитное покрытие, нанесенное на заднюю кромку, подвергается большой эрозии.

Известно избирательное нанесение системы теплового защитного покрытия на аэродинамический профиль, в частности, так, что задняя кромка аэродинамического профиля и соседние зоны аэродинамического профиля остаются без покрытия. Описание избирательных покрытий приведено, например, в US 6126400, US 6077036, WO 2005/108746 A1 и описание способа покрытия - в US 2009/0104356 A1.

Однако в US 6077036 сторона повышенного давления аэродинамического профиля полностью не имеет покрытия, что означает, что зоны, в которых нет комбинированной толщины литого тела аэродинамического профиля и нанесенного на него покрытия, остаются не защищенными от температуры горячего газа сгорания.

В WO 2008/043340 А1 приведено описание турбинного аэродинамического профиля с тепловым защитным покрытием, толщина которого изменяется на поверхности аэродинамического профиля. Однако, как и в WO 98/10174, задняя кромка полностью покрыта, так что не достигается положительного влияния на эффективность лопаток. В ЕР 1544414 А1 показан турбинный аэродинамический профиль с тепловым защитным покрытием, толщина которого изменяется по поверхности аэродинамического профиля, при этом задняя кромка покрыта не полностью. В US 6126400 тепловое защитное покрытие покрывает лишь примерно половину аэродинамического профиля, при рассматривании от передней кромки к задней кромке.

В US 2009/0104356 А1 способ маскирования задней кромки приводит к образованию ступеньки в покрытии, которая оказывает отрицательное влияние на аэродинамические свойства лопатки.

С учетом указанного выше уровня техники, задачей данного изобретения является создание улучшенного аэродинамического профиля и улучшенной турбинной рабочей лопатки или направляющей лопатки.

Эти задачи решены с помощью турбинного аэродинамического профиля, согласно пункту 1 формулы изобретения, и с помощью турбинной направляющей лопатки или рабочей лопатки, согласно пункту 9 формулы изобретения. В зависимых пунктах формулы изобретения указаны другие модификации изобретения.

Турбинный аэродинамический профиль, согласно изобретению, содержит тело аэродинамического профиля с передней кромкой, задней кромкой и наружной поверхностью. Наружная поверхность включает сторону пониженного давления, проходящую от передней кромки к задней кромке, и сторону повышенного давления, проходящую от передней кромки к задней кромке и расположенную противоположно стороне пониженного давления тела аэродинамического профиля. Турбинный аэродинамический профиль дополнительно содержит систему теплового защитного покрытия, присутствующую в покрытой зоне поверхности, и непокрытую зону поверхности, в которой система теплового защитного покрытия отсутствует. Эта непокрытая зона поверхности проходит на стороне пониженного давления от задней кромки в направлении передней кромки до линии раздела, расположенной на стороне пониженного давления между передней кромкой и задней кромкой, в частности, ближе к задней кромке, чем к передней кромке. Линия раздела может, в частности, проходить в основном в радиальном направлении тела аэродинамического профиля. Тело аэродинамического профиля содержит ступеньку в наружной поверхности. Эта ступенька проходит вдоль линии раздела. В частности, ступенька может быть образована так, что поверхность непокрытой зоны поверхности лежит выше, чем поверхность обычно литого тела аэродинамического профиля в покрытой зоне поверхности, т.е. при рассматривании вдоль поверхности стороны пониженного давления непокрытого тела аэродинамического профиля от передней кромки в направлении задней кромки ступенька приводит к увеличенному расстоянию от линии хорды тела аэродинамического профиля по сравнению с поверхностью стороны пониженного давления без такой ступеньки. Высота ступеньки предпочтительно равна толщине системы теплового защитного покрытия.

«Более высокая» означает, что относительно точки или плоскости, расположенной внутри аэродинамического профиля, «более высокая» наружная поверхность имеет большее расстояние до точки или плоскости, чем вторая наружная поверхность. В результате поверхность, которая не выше, можно рассматривать в качестве углубления по сравнению с «более высокой» поверхностью.

Данное изобретение позволяет изготавливать очень тонкие задние кромки без нанесенных на них систем теплового защитного покрытия и одновременно минимизировать или даже исключать ступеньку на границе между покрытой зоной поверхности и непокрытой зоной поверхности. Эта ступенька минимизируется или исключается посредством предусмотрения указанной ступеньки в поверхности тела аэродинамического профиля. Посредством выбора высоты ступеньки так, что она согласована с толщиной системы теплового защитного покрытия, подлежащей нанесению для образования покрытой зоны поверхности, поверхность нанесенного покрытия в покрытой зоне может быть согласована с поверхностью непокрытой зоны поверхности. Это позволяет создавать окончательно обработанную поверхность частично покрытого аэродинамического профиля, которая соответствует заданной конструкции как в покрытой зоне поверхности, так и в непокрытой зоне поверхности. Кроме того, поскольку нет теплового защитного покрытия на задней кромке, не происходит отрицательного влияния на срок службы аэродинамического профиля вследствие высоких уровней эрозии теплового защитного покрытия на задней кромке.

Система теплового защитного покрытия может, в частности, содержать тепловое защитное покрытие и связующее покрытие, расположенное между тепловым защитным покрытием и наружной поверхностью тела аэродинамического профиля. Типичными связующими покрытиями являются образующие оксид алюминия материалы, в частности, так называемые покрытия MCrAlY, где М обозначает кобальт и/или никель, Cr обозначает хром, Al обозначает алюминий и Y обозначает иттрий и/или один или несколько редкоземельных элементов. В случае когда система покрытия включает связующий слой, высота ступеньки предпочтительно соответствует суммарной толщине связующего покрытия и теплового защитного покрытия.

Кроме того, турбинный аэродинамический профиль, соответственно, является полым и содержит по меньшей мере одно охлаждающее отверстие, в частности, реализованное посредством срезанной конструкции, на задней кромке. Таким образом, задняя кромка может быть выполнена особенно тонкой, если полое тело аэродинамического профиля содержит стенку, толщина которой меньше в непокрытой зоне поверхности, чем в покрытой зоне поверхности. Толщина зоны стенки может, в частности, уменьшаться в небольшой переходной зоне по одну или по обе стороны линии раздела. Это исключает наличие ступеньки на внутренней поверхности тела аэродинамического профиля в месте расположения ступеньки в наружной поверхности или вблизи него.

Турбинная лопатка, согласно изобретению, которая является, в частности, направляющей лопаткой или рабочей лопаткой газовой турбины, содержит турбинный аэродинамический профиль, согласно изобретению. Использование аэродинамического профиля, согласно изобретению, позволяет обеспечивать высокую эффективность газотурбинных лопаток.

Другие признаки, свойства и преимущества данного изобретения следуют из приведенного ниже описания варианта выполнения со ссылками на прилагаемые чертежи, на которых изображено:

фиг.1 - структура аэродинамического профиля, согласно изобретению;

фиг.2 - задняя кромка аэродинамического профиля, показанного на фиг.1;

фиг.3 - деталь из фиг.2.

Турбинный аэродинамический профиль может быть частью турбинной рабочей лопатки или турбинной направляющей лопатки. Турбинные рабочие лопатки закреплены на роторе и вращаются вместе с ротором. Они предназначены для приема кинетической энергии из потока газа сгорания, создаваемого системой сгорания. Турбинные направляющие лопатки закреплены на корпусе турбины и образуют сопла для направления газов сгорания с целью оптимизации переноса кинетической энергии в роторные лопатки. Турбинный аэродинамический профиль, согласно изобретению, можно использовать, в целом, как в турбинных направляющих лопатках, так и в турбинных рабочих лопатках.

Аэродинамический профиль 1, согласно изобретению, показан на фиг.1. Он содержит литое тело 13 аэродинамического профиля, переднюю кромку 3, на которой поток газов сгорания достигает аэродинамического профиля 1, при этом передняя кромка 3 является верхней по потоку кромкой, и заднюю кромку 5, на которой газы сгорания покидают аэродинамический профиль 1, при этом задняя кромка 5 является нижней по потоку кромкой. Наружная поверхность аэродинамического профиля 1 образована выпуклой стороной 7 пониженного давления и менее выпуклой и обычно вогнутой стороной 9 повышенного давления, которая образована противоположно стороне 7 пониженного давления. Как сторона 7 пониженного давления, так и сторона 9 повышенного давления проходят от передней кромки 3 к задней кромке 5 и образованы наружной поверхностью стенки тела аэродинамического профиля, т.е. поверхностью стенки, противоположной внутреннему пространству тела аэродинамического профиля.

Тело 13 аэродинамического профиля является полым и содержит в данном варианте выполнения несколько внутренних полостей 11А-11Е для обеспечения возможности прохождения через них потока охлаждающей текучей среды, обычно отведенного от компрессора воздуха турбинного двигателя, и охлаждения тела 13 аэродинамического профиля. Кроме того, предусмотрена возможность выхода определенного количества охлаждающей текучей среды из внутренних полостей 11А-11Е через охлаждающие отверстия, имеющиеся в стенке тела 13 аэродинамического профиля, в направлении наружной поверхности для образования пленки охлаждающей текучей среды на поверхности. Следует отметить, что охлаждающие отверстия, соединяющие внутренние полости 11А-11Е с наружной стороной тела 13 аэродинамического профиля, не изображены на фигурах. Внутренняя полость 11Е, которая расположена ближе всего к задней кромке 5, содержит щель 15, которая позволяет охлаждающей текучей среде выходить из полости вблизи задней кромки 5. Щель 15 образована посредством срезания стороны 9 повышенного давления аэродинамического профиля 1. Это может быть выполнено для уменьшения потерь за счет блокирования у задней кромки 5 и тем самым для увеличения эффективности лопаток турбомашины. Действие уменьшения потерь обусловлено уменьшенной толщиной задней кромки за счет срезанной конструкции.

Для дальнейшего уменьшения толщины задней кромки 5 толщина стенки 17 тела 13 аэродинамического профиля уменьшена на стороне 7 пониженного давления аэродинамического профиля в зоне, примыкающей к задней кромке 5, как показано на фиг.2. На фиг.2 показана задняя кромка 5 аэродинамического профиля 1 и примыкающие к ней зоны аэродинамического профиля. Можно видеть, что сторона 7 пониженного давления содержит тонкую зону 19 аэродинамического профиля, которая проходит от задней кромки 5 на определенную длину аэродинамического профиля в направлении передней кромки 3.

Тело 13 аэродинамического профиля отлито из стойкого к высокой температуре суперсплава на основе никеля или кобальта и покрыто системой теплового защитного покрытия, которая уменьшает коррозию тела 13 аэродинамического профиля, которая может происходить за счет горячих и коррозийных газов сгорания, протекающих вдоль аэродинамического профиля 1 при работе газовой турбины. Система 21 теплового защитного покрытия показана на фиг.3, на которой показана деталь фиг.2 в зоне перехода между нормальной стенкой 17 тела аэродинамического профиля и тонкой зоной 19 аэродинамического профиля. Система 21 теплового защитного покрытия содержит фактическое тепловое защитное покрытие 23, например оксид циркония, который, по меньшей мере, частично стабилизирован оксидом иттрия, и связующее покрытие 25, расположенное между поверхностью материала суперсплава тела 13 аэродинамического профиля и тепловым защитным покрытием 23. Связующее покрытие обычно является образующим оксид алюминия материалом, в частности покрытием MCrAlY.

Определенная минимальная толщина стенки 17 тела аэродинамического профиля необходима для нанесения системы 21 теплового защитного покрытия на тело 13 аэродинамического профиля, так что покрытая стенка характеризуется минимальной толщиной. Однако эта минимальная толщина толще желаемой толщины тонкой зоны 19 аэродинамического профиля. Поэтому система 21 теплового защитного покрытия не нанесена на тонкую зону 19 аэродинамического профиля, так что тонкая зона 19 аэродинамического профиля совпадает с непокрытой зоной 29 аэродинамического профиля, которая проходит от задней кромки 5 до линии раздела, расположенной между задней кромкой 5 и передней кромкой 3, в частности, ближе к задней кромке 5, чем к передней кромке 3. Обычно, непокрытая зона поверхности не проходит больше, чем по 10-30% расстояния между задней кромкой 5 и передней кромкой 3. Однако точная длина, по которой проходит непокрытая зона 29 поверхности, зависит от фактической конструкции аэродинамического профиля.

Линия раздела проходит в основном в радиальном направлении тела 13 аэродинамического профиля, т.е. в направлении от хвостовика лопатки в направлении вершины лопатки. Это направление перпендикулярно плоскости аэродинамического профиля, показанного на фигурах. Однако линия раздела не должна быть прямой линией, а может быть также слегка изогнутой, так что расстояние линии раздела от задней кромки 5 изменяется в зависимости от радиального положения на поверхности стороны пониженного давления.

Согласно варианту выполнения, показанному на фиг.2, непокрытая зона поверхности имеется лишь на стороне 7 пониженного давления и вблизи задней кромки 5.

Линия раздела задана с помощью ступеньки 27 в наружной поверхности литого тела 13 аэродинамического профиля. В показанном варианте выполнения высота h ступеньки 27 соответствует толщине системы 21 теплового защитного покрытия и выбрана так, что поверхность 33 тонкой зоны 19 аэродинамического профиля лежит выше, чем поверхность 28 тела 13 аэродинамического профиля в зоне поверхности, подлежащей покрытию.

Перед нанесением системы 21 теплового защитного покрытия на поверхность литого тела 13 аэродинамического профиля на сторону 7 пониженного давления наносится маска между ступенькой 27 и задней кромкой 5 для предотвращения адгезии покрывного материала с тонкой зоной 19 аэродинамического профиля, которая должна превратиться в непокрытую зону 29 аэродинамического профиля. После нанесения системы 21 теплового защитного покрытия на наружную поверхность литого тела 13 аэродинамического профиля и удаления маски с поверхности 31 непокрытой зоны поверхности поверхность системы 21 теплового защитного покрытия находится на одном уровне с поверхностью 33 непокрытой зоны 29 поверхности. Поэтому не образуется ступенька, которая может приводить к потерям, между покрытой зоной 30 поверхности и непокрытой зоной 29 поверхности стороны 7 пониженного давления аэродинамического профиля. Дополнительно к этому, поскольку тонкая зона 19 аэродинамического профиля между линией раздела и задней кромкой 5 свободна от теплового защитного покрытия, то не только достигается очень тонкая задняя кромка 5, но также исключается эрозия покрытия вследствие высоких скоростей газов сгорания на задней кромке 5.

Для исключения слабой зоны в стенке 17 тела 13 аэродинамического профиля переход между регулярной стенкой 17 тела аэродинамического профиля и тонкой зоной 19 аэродинамического профиля не выполнен в виде ступеньки, а в виде зоны, в которой толщина регулярной стенки 17 постепенно уменьшается от нормальной толщины до толщины тонкой зоны 19 аэродинамического профиля. В этой связи следует отметить, что толщина системы 21 теплового защитного покрытия и поэтому высота h ступеньки 27 изображена на фигурах преувеличенно для обеспечения наглядности.

Выше было приведено описание изобретения на основе служащего в качестве примера варианта выполнения изобретения с целью иллюстрации. Однако возможны отклонения от показанного варианта выполнения. Например, дополнительная непокрытая зона поверхности может иметься на стороне пониженного давления и/или стороне повышенного давления аэродинамического профиля. Дополнительно к этому, система теплового защитного покрытия может отклоняться от системы теплового защитного покрытия, используемой в указанном варианте выполнения. Кроме того, хотя указанный аэродинамический профиль имеет пять внутренних полостей для обеспечения прохождения через них потока охлаждающей текучей среды, количество внутренних полостей может быть больше или меньше пяти.


ТУРБИННЫЙ АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ
ТУРБИННЫЙ АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ
ТУРБИННЫЙ АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 1 427.
27.06.2014
№216.012.d559

Способ и система для контроля системы, связанной с безопасностью

Группа изобретений относится к средствам контроля по меньшей мере одного процесса, происходящего в системе, связанной с безопасностью. Технический результат заключается в обеспечении возможности гибкой и обобщенной сертификации связанных с безопасностью систем. Для этого предложен способ...
Тип: Изобретение
Номер охранного документа: 0002520395
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d599

Способ регулирования для зеркала расплава в кристаллизаторе непрерывной разливки

Подачу жидкого металла в кристаллизатор непрерывной разливки устанавливают посредством блокирующего устройства. Частично отвердевшее металлическое прессованное изделие выпускают из кристаллизатора непрерывной разливки с помощью разгрузочного устройства. Измеренное фактическое значение (hG)...
Тип: Изобретение
Номер охранного документа: 0002520459
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d5ee

Способ определения очищенного ценного газа из газовой смеси, а также устройство для осуществления этого способа

Изобретение относится к способу и устройству для отделения очищенного ценного газа из газовой смеси. Способ и устройство содержат, главным образом, углекислый газ, по меньшей мере, один ценный газ, а также, по меньшей мере, одно вредное вещество, причем проводится конденсация углекислого газа,...
Тип: Изобретение
Номер охранного документа: 0002520544
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d640

Экономящая энергию эксплуатация рельсовых траснспортных средств с, по меньшей мере, двумя приводными блоками

Cпособ управления приводом рельсового транспортного средства, которое имеет привод с несколькими приводными блоками, согласно которому приводные блоки подключают к приводу и отключают от него, так что сумма приводных усилий приводных блоков больше, чем требуемая сила тяги. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002520626
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d77c

Способ функционирования энергетической автоматизированной системы и энергетическая автоматизированная система

Изобретение относится к способу функционирования энергетической автоматизированной системы (10) для электрической сети энергоснабжения, которая имеет локальное устройство (11) обработки данных, которое предоставляет программу, которая при ее выполнении предоставляет функции для управления и/или...
Тип: Изобретение
Номер охранного документа: 0002520942
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d961

Высоковольтный силовой выключатель с раствором контактов, снабженным отклоняющими коммутационный газ элементами

Изобретение касается системы коммутационного аппарата с раствором (6) контактов, который по меньшей мере частично окружен изоляционным соплом (7). Изоляционное сопло (7) имеет сопловой канал (8), который входит в объем (10) нагревания газа. Внутри объема (10) нагревания газа расположен...
Тип: Изобретение
Номер охранного документа: 0002521427
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d9c6

Газотурбинный двигатель

Газотурбинный двигатель включает лопатку статора для направления горячих газов сжигания на роторные лопатки. Лопатка статора включает платформу, расположенную на радиально внутренней стороне лопатки относительно оси вращения двигателя. Платформа имеет часть задней кромки по потоку ниже...
Тип: Изобретение
Номер охранного документа: 0002521528
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.db52

Сплав, защитный слой и деталь

Изобретение относится к области металлургии, в частности к сплавам на основе никеля защитных покрытий деталей газовой турбины. Сплав на основе никеля для защитного покрытия деталей газовой турбины содержит, мас.%: 24-26 кобальта, 16-25 хрома, 9-12 алюминия, 0,1-0,7 иттрия и/или по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002521924
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db53

Металлическое связующее покрытие с высокой гамма/гамма' температурой перехода и компонент

Изобретение относится к области металлургии, в частности к металлическому покрытию с фазами γ- и γ. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ-фазы, при этом сплав содержит, мас.%: железо 0,5-5, кобальт по меньшей мере 1, хром по меньшей мере 1,...
Тип: Изобретение
Номер охранного документа: 0002521925
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbd6

Устройство позиционирования загрузочной корзины

Изобретение относится к оборудованию металлургических печей и касается устройства позиционирования отклоняемой загрузочной корзины у загрузочного отверстия плавильной печи, плавильной печи, способа позиционирования загрузочной корзины, а также способа загрузки плавильной печи. Устройство...
Тип: Изобретение
Номер охранного документа: 0002522056
Дата охранного документа: 10.07.2014
Показаны записи 231-240 из 945.
27.05.2014
№216.012.c827

Турбинная или компрессорная лопатка

Лопатка для турбины или компрессора содержит перо и хвостовик. Перо лопатки изготовлено из согнутой слоистой полосы из армированной волокном пластмассы, в которой в зоне фальца образована удерживающая петля, причем из лежащих друг на друге концов полосы сформирована поверхность лопатки....
Тип: Изобретение
Номер охранного документа: 0002517005
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c918

Пневматическая флотационная машина и способ флотации

Группа изобретений относится к способам флотации с применением пневматических флотационных машин, может быть использована для обогащения полезных ископаемых и при переработке предпочтительно минеральных веществ с содержанием от низкого до среднего полезного компонента или соответственно ценного...
Тип: Изобретение
Номер охранного документа: 0002517246
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9c2

Способ определения массового расхода всасывания газовой турбины

Группа изобретений относится к определению массового расхода всасывания газовой турбины. Технический результат заключается в определении массового расхода всасывания, что обеспечивает возможность надежного прогноза ожидаемого выигрыша по мощности. Для этого предложен способ определения...
Тип: Изобретение
Номер охранного документа: 0002517416
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc79

Система воздушной контактной сети

Изобретение касается системы воздушной контактной сети, включающей в себя потолочные контактные рельсы (1, 16), каждый из которых в своей центральной области посредством неподвижной точки зафиксирован на строительном сооружении (14), а кроме того, соединен со строительным сооружением (14) через...
Тип: Изобретение
Номер охранного документа: 0002518116
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce00

Короткозамкнутый ротор

Изобретение относится к короткозамкнутому ротору для асинхронного электродвигателя. Технический результат заключается в повышении электрического коэффициента полезного действия состоящего из двух материалов короткозамкнутого ротора. Ротор содержит листовой пакет (1) ротора с канавками (3), на...
Тип: Изобретение
Номер охранного документа: 0002518507
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ced6

Устройство для определения углового положения поворотной направляющей лопатки компрессора

Изобретение касается устройства для определения углового положения установленной в компрессоре поворотной вокруг своей продольной оси направляющей лопатки компрессора, для которой предусмотрена синхронно вращающаяся с ней гладкая измерительная поверхность. Угловое положение вращающейся вокруг...
Тип: Изобретение
Номер охранного документа: 0002518721
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cee3

Уплотнение вала для турбомашины

Изобретение относится к уплотнению вала для турбомашины. Уплотнение вала для турбомашины содержит нагружаемое технологическим газом и запираемое со стороны процесса уплотнение технологического газа и нагружаемое воздухом и запираемое со стороны атмосферы атмосферное уплотнение. Вокруг вала...
Тип: Изобретение
Номер охранного документа: 0002518734
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cef2

Секция ротора для ротора турбомашины

Секция ротора турбомашины содержит крепежные пазы для рабочих лопаток, распространяющиеся в осевом направлении. В каждом крепежном пазу установлена рабочая лопатка, включающая обращенную радиально внутрь контактную поверхность. Для пропускания охлаждающего средства по торцевой поверхности...
Тип: Изобретение
Номер охранного документа: 0002518749
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf0a

Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты)

Изобретение относится к охлаждению двигателя внутреннего сгорания. Многоотражательный многослойный комплекс выполнен для контактирования с поверхностью подлежащей охлаждению стенки плоско и с обеспечением теплопроводности и имеет множество перфорированных экранных слоев с множеством выполненных...
Тип: Изобретение
Номер охранного документа: 0002518773
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf0c

Способ и устройство тангенциально смещающего внутреннего охлаждения на направляющей лопатке сопла

Узел турбины содержит первое устройство (200) направляющих лопаток, второе устройство (210) направляющих лопаток, и отражатель (100), образованный из пластинчатого элемента. Отражатель содержит первую область (101) отверстия с первой формой отверстия и вторую область (102) отверстия со второй...
Тип: Изобретение
Номер охранного документа: 0002518775
Дата охранного документа: 10.06.2014
+ добавить свой РИД