×
27.06.2015
216.013.5a79

Результат интеллектуальной деятельности: ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ

Вид РИД

Изобретение

№ охранного документа
0002554702
Дата охранного документа
27.06.2015
Аннотация: Предлагаемое изобретение относится к области электроракетных двигателей. В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру, закрепленную на фланце, подпружиненном относительно магнитопровода, фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры. Использование изобретения позволяет непрерывно восстанавливать геометрию подверженной катодному распылению разрядной камеры, многократно увеличивая ресурс и при этом сохраняя характеристики двигателей во все время эксплуатации. 3 ил.
Основные результаты: Двигатель с замкнутым дрейфом электронов, содержащий электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенная внутри него кольцевая разрядная камера, закрепленная на фланце, подпружиненном относительно магнитопровода, отличающийся тем, что фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры.

Предлагаемое изобретение относится к области электроракетных двигателей (ЭРД).

Известен двигатель с замкнутым дрейфом электронов, например, двухступенчатый двигатель с анодным слоем (ДАС) (С.Д. Гришин, B.C. Ерофеев и др. Характеристики двухступенчатого ионного ускорителя с анодным слоем. ПМТФ, 1978, №2, с.28), содержащий кольцевые катоды и анод-газораспределитель. Причем указанные кольцевые катоды разрядной ступени одновременно являются анодами ускорительной ступени. Обе ступени размещаются в кольцевом зазоре магнитной системы, состоящей из электромагнита и магнитопровода с полюсами. Катоды и аноды изготовлены из молибдена.

Недостатком такого ДАС является сравнительно небольшой ресурс работы вследствие катодного распыления электродов. Так четырехсотчасовые испытания ДАС на висмуте показали, что скорость уноса молибденовых катодов составляла ~(1,7-1,9)105 г/К (Г.Д. Гришин, Л.В. Лесков, Н.П. Козлов. Электрические ракетные двигатели. М.: Машиностроение, 1975 г., с.164). Это означает, что даже при токе 5 А длина кольцевых катодов за каждые 1000 часов уменьшается на 10-15 мм. Из предлагаемых в (Г.Д. Гришин, Л.В. Лесков, Н.П. Козлов. Электрические ракетные двигатели. М.: Машиностроение, 1975 г., с.164) путей увеличения ресурса ДАС наиболее существенным является замена материала катодов на графит.

В работе (А.В. Семенкин, А.Е. Солодухин. Исследование эрозии в разрядном канале многорежимного двигателя с анодным слоем. Теоретические и экспериментальные исследования вопросов общей физики. ЦНИИМаш, 2006 г. С.114-117), посвященной исследованию эрозии разрядного канала ДАС, показано, что при испытаниях двухступенчатого ДАС общей продолжительностью до 1200 часов эрозии катодов первой ступени не наблюдалось. Приведены пути обеспечения ресурса двигателя:

1. изготовление распыляющихся деталей из стойких к распылению материалов;

2. увеличение толщины распыляемых электродов;

3. сокращение глубины канала.

Благодаря оптимизации конструкции ЭРД второй и третий пути практически исчерпали свои возможности в современных конструкциях ДАС. В ДАС (А.В. Семенкин, А.Е. Солодухин. Исследование эрозии в разрядном канале многорежимного двигателя с анодным слоем. Теоретические и экспериментальные исследования вопросов общей физики. ЦНИИМаш, 2006 г. С.114-117), в котором электроды выполнены из графита, коэффициент катодного распыления даже при больших энергиях ионов (при напряжении в ускорительной ступени 2,5 кВ) снижается в ~(2-3) раза. Однако длительные испытания (продолжительностью ~1000 часов) такого ДАС на висмуте показали, что скорость уноса графита катода ускорительной ступени двигателя при токе 6 А такова, что длина катода за это время уменьшилась на ~1 мм. Использование таких двигателей для современных КА (при требуемом ресурсе работы более 10000 часов) привело бы к уменьшению длины катода ускорительной ступени, образующего разрядную камеру, на величину более 10 мм и, следовательно, к значительной эрозии магнитных полюсов, сопровождаемой деградацией характеристик двигателя.

Известен двухступенчатый двигатель с анодным слоем (RU 2406873 C2, МПК F03H 1/00, опубл. 20.12.2010), содержащий электромагнит, магнитопровод с полюсами; жестко связанные с магнитопроводом и расположенные внутри него кольцевой анод-газораспределитель и выполненные из графита кольцевые катоды разрядной и ускорительной ступеней. В нем катод ускорительной ступени, образующий разрядную камеру, выполнен составным и содержит кольцевой корпус и подпружиненные в направлении выхода из двигателя наружное и внутреннее кольца из графита, выполненные с возможностью перемещения по наружной цилиндрической поверхности корпуса вдоль оси двигателя и упирающиеся в систему радиально расположенных на полюсах магнитопровода штифтов. При этом радиальные штифты, смещенные в осевом направлении, упираются или в наружные поверхности колец катода ускорительной ступени, выполненные коническими, или в продольные пазы различной длины, расположенные на выходном участке колец. Причем штифты выполнены из немагнитного материала, коэффициент катодного распыления которого близок к коэффициенту катодного распыления материала колец.

В этом двухступенчатом ДАС одновременно с катодным распылением рабочего участка, подпружиненного в сторону выхода из двигателя катода ускорительной ступени, происходит распыление упоров, ограничивающих перемещение последнего. При полном распылении упоров первого уровня происходит ступенчатое перемещение катода ускорительной ступени (разрядной камеры) до упоров второго уровня, а затем после распыления последних осуществляется его ступенчатое перемещение до упоров третьего уровня. Таким образом, ступенчато восстанавливая рабочий участок ускорительной ступени в несколько раз, повышается ресурс двигателя.

Однако при этом происходит ступенчатое изменение параметров двигателя из-за изменения осевого расположения рабочего участка катода ускорительной ступени.

Аналогичный недостаток характеризовал и двигатель с замкнутым дрейфом электронов - стационарный плазменный двигатель (СПД) ОКБ «Факел» (Островский В.Г., Сухов Ю.И. «Разработка, создание и эксплуатация ЭРД и ЭРДУ в ОКБ-1 - ЦКБЭМ - НПО «Энергия» - РКК «Энергия» (1958-2011)» под редакцией и при участии Соколова Б.А. Ракетно-космическая техника. Труды РКК "Энергия". Сер. XII. Вып.3-4, 2011 г. С.69-70), принятый за прототип. В нем магнитная система двигателя состоит из магнитопровода, содержащего подвижный наружный фланец и неподвижную часть магнитопровода с магнитными экранами, внутренних катушек намагничивания, четырех наружных катушек намагничивания, каждая из которых состоит из двух частей, наружного и внутреннего магнитных полюсов. В полость, образованную магнитными экранами, помещена обойма разрядной камеры. Обойма выполнена из магнитомягкого металла и имеет возможность перемещаться по магнитным экранам. Обе части наружных катушек намагничивания расположены на общем сердечнике, причем одна часть (неподвижная) закреплена на наружном фланце магнитной системы. Обойма разрядной камеры взаимодействует с подвижным наружным фланцем и неподвижной частью магнитопровода через стопорно-дозирующее устройство храпового типа. Подвижные части магнитной системы подпружинены пружинами. Изолятор разрядной камеры выполнен из материала АБН-1.

Работает устройство перемещения следующим образом. При возникновении перемещения разрядной камеры (для компенсации эрозии диэлектрика) на обе части каждой наружной катушки подается электропитание, создающее силу отталкивания, под действием которой подвижная часть катушек переместит наружный фланец, сжав при этом пружины. Наружное стопорно-дозирующее устройство сработает на один шаг, т.к. перемещение обоймы будет ограничено внутренним храповиком. После отключения питания катушек пружины переместят наружный фланец, а вместе с ним и обойму на один шаг вперед. При этом внутренний храповик перейдет в следующее положение. Данная операция может многократно повторяться в соответствии с числом ходов стопорно-дозирующего устройства.

Квалификационные ресурсные испытания показали, что в течение первых 2000-3000 часов происходит непрерывное изменение тяги СПД, составляющее до ±10% от номинальной величины, после чего она стабилизируется. Из этого следует, что при каждом скачкообразном перемещении разрядной камеры, восстанавливающим ее первоначальную геометрию, тяга двигателя длительное время будет отличаться от номинального значения.

Задачей предлагаемого изобретения является увеличение ресурса двигателей с замкнутым дрейфом электронов (двухступенчатого двигателя с анодным слоем и стационарного плазменного двигателя) при сохранении их характеристик в течение всего времени работы.

Эта задача решается следующим образом.

В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру, закрепленную на фланце, подпружиненном относительно магнитопровода, фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры.

На фиг.1 представлен общий вид двигателя с замкнутым дрейфом электронов (двухступенчатого двигателя с анодным слоем), в котором магнитопровод 1 с полюсами 2 снабжен центральным и периферийными электромагнитами 3. Кольцевой катод разрядной ступени 4 и расположенный внутри него анод-газораспределитель 5 неподвижно установлены на магнитопроводе 1. Кольцевой катод ускорительной ступени 6, образующий разрядную камеру, жестко связанный с фланцем 7, подпружинен относительно магнитопровода 1 пружиной 8. Фланец 7 с помощью штифтов 9 и втулки 10 соединен со стержнем 11, второй конец которого закреплен на магнитопроводе 1. При этом стержень 11 выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок кольцевого катода ускорительной ступени 6. Катод-нейтрализатор 12 установлен на задней стенке магнитопровода 1.

Предложенный двигатель работает следующим образом. Разогревают катод-нейтрализатор 12, подают рабочее тело в катод-нейтрализатор 12 и анод-газораспределитель 5 и производят запуск двигателя. При работе двухступенчатого двигателя с анодным слоем (например, ДАС-200) на номинальном режиме при мощности 25 кВт температура в районе расположения стержня 11 составляет примерно 600°C. Ресурсные испытания ДАС с катодом ускорительной ступени 6, выполненным из графита В1, показали, что линейная скорость уноса графита составила 1 мм за 1000 часов работы двигателя. Для обеспечения ресурса 10000 часов стержень 11 должен удлиниться на 10 мм. Принимая длину стержня 180 мм, его относительное удлинение составит ε=0,055555.

Расчет ползучести материалов стержня в соответствии с работой (Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. С.241-253) проводится по следующим формулам: ε=εmin·t; εmin=k·σn.

Представленные в таблице (фиг.3) коэффициенты k, n для каждого материала зависят от температуры. Используя исходные данные (потребный ресурс, температуру в районе стержня и его длину) и выбрав материал стержня из таблицы, находим величину напряжения пластической деформации σ, определяющую диаметр стержня и жесткость пружины.

Исходя из представленных в таблице (фиг.3) величин напряжения σ, можно выбрать площадь сечения стержня и жесткость пружины. Например, при использовании в качестве материала стержня углеродистой стали с рабочей температурой 650°C и радиусе стержня 2 мм сила, которая должна действовать на стержень со стороны пружины (или другого элемента, заменяющего пружину, например поршня), равна f=σ·S=12,6·8,3=104,3 H.

По полученной силе выбираем нужную жесткость пружины.

Таким образом, при функционировании ДАС нагретый до рабочей температуры подпружиненный стержень 11 будет удлиняться со скоростью, равной линейной скорости эрозии стенок кольцевого катода ускорительной ступени 6. Под действием пружины 8 с помощью штифтов 9 и втулки 10 стержень 11 перемещает фланец 7 и установленный на нем катод ускорительной ступени 6, представляющий собой разрядную камеру, непрерывно восстанавливая его геометрию на выходе из двигателя.

На фиг.2 представлен общий вид стационарного плазменного двигателя, в котором магнитопровод 1 с полюсами 2 снабжен центральным и периферийными электромагнитами 3. Анод-газораспределитель 5 неподвижно установлен на магнитопроводе 1. Разрядная камера 13, жестко связанная с фланцем 7, подпружинена относительно магнитопровода 1 пружиной 8. Фланец 7 с помощью штифтов 9 и втулки 10 соединен со стержнем 11, второй конец которого закреплен на магнитопроводе 1. При этом стержень 11 выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры 13. Катод-нейтрализатор 12 установлен на задней стенке магнитопровода 1. Выбор материала и размеров стержня 11 может быть осуществлен аналогично выбору, произведенному для варианта ДАС.

Таким образом, предложенное исполнение двигателей с замкнутым дрейфом электронов позволяет непрерывно восстанавливать геометрию подверженной катодному распылению разрядной камеры, многократно увеличивая ресурс и при этом сохраняя характеристики двигателей во все время эксплуатации.

Двигатель с замкнутым дрейфом электронов, содержащий электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенная внутри него кольцевая разрядная камера, закрепленная на фланце, подпружиненном относительно магнитопровода, отличающийся тем, что фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры.
ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ
ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ
ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ
Источник поступления информации: Роспатент

Показаны записи 321-330 из 370.
10.04.2019
№219.017.0636

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит корпус, состоящий из верхнего переходника с металлической обшивкой, среднего переходника, нижнего переходника, бак окислителя, бак горючего, межбаковую ферму,...
Тип: Изобретение
Номер охранного документа: 0002412871
Дата охранного документа: 27.02.2011
17.04.2019
№219.017.153f

Способ заправки рабочим телом гидравлических магистралей доставляемого оборудования космических объектов

Изобретение относится к космической технике и может быть использовано для заправки рабочими телами гидравлических магистралей доставляемого на орбитальные космические объекты оборудования. Согласно предлагаемому способу, перед заполнением гидравлической магистрали рабочим телом из бака...
Тип: Изобретение
Номер охранного документа: 0002271969
Дата охранного документа: 20.03.2006
17.04.2019
№219.017.15b2

Способ определения расхода системы подачи рабочего тела к источнику плазмы

Изобретение относится к эксплуатируемой преимущественно в условиях космического вакуума измерительной технике, предназначенной для определения расхода рабочего тела (ксенона), подаваемого из баков реактивных двигательных установок космических аппаратов. Измеряют рабочее давление P(t) во входной...
Тип: Изобретение
Номер охранного документа: 0002392589
Дата охранного документа: 20.06.2010
17.04.2019
№219.017.15fe

Способ определения герметичности системы подачи рабочего тела к источнику плазмы, преимущественно в условиях вакуума

Изобретение относится к области испытательной техники, в частности к испытаниям на герметичность систем космических аппаратов. Способ определения герметичности системы подачи рабочего тела к источнику плазмы включает измерение давления и температуры в контролируемом объеме системы на...
Тип: Изобретение
Номер охранного документа: 0002377522
Дата охранного документа: 27.12.2009
19.04.2019
№219.017.2df7

Система заправки и хранения кислорода на борту космического аппарата

Изобретение относится к средствам жизнеобеспечения экипажей космических аппаратов, в частности при проведении ими внекорабельной деятельности (ВКД). Система содержит блоки: приема газа (в виде заправляемого переносного кислородного блока), предварительной осушки кислорода (с регулятором...
Тип: Изобретение
Номер охранного документа: 0002347724
Дата охранного документа: 27.02.2009
19.04.2019
№219.017.2e36

Устройство для мажоритарного выбора сигналов

Изобретение относится к области автоматики и вычислительной техники и может быть использовано при построении высоконадежных резервированных устройств и систем с возможностью обеспечения синхронной работы всех резервных каналов. Техническим результатом изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002396591
Дата охранного документа: 10.08.2010
19.04.2019
№219.017.2f31

Распорное устройство для тонкостенных оболочек

Изобретение относится к технологии получения сварных соединений, в частности к распорному устройству для сварки тонкостенных оболочек, и может быть использовано для выполнения сварных швов в замкнутых полостях различных изделий. Распорное устройство содержит центральный цилиндр и распоры с...
Тип: Изобретение
Номер охранного документа: 0002353495
Дата охранного документа: 27.04.2009
19.04.2019
№219.017.2f48

Способ управления ориентацией космического аппарата, снабженного бортовым радиотехническим комплексом

Изобретение относится к космической технике и может быть использовано в системах управления ориентацией спутников связи, снабженных бортовым радиотехническим комплексом, для выполнения своей целевой задачи. Способ управления ориентацией космического аппарата заключается в определении градиентов...
Тип: Изобретение
Номер охранного документа: 0002355013
Дата охранного документа: 10.05.2009
19.04.2019
№219.017.3024

Устройство для хранения и подачи жидких компонентов (варианты)

Изобретение относится к устройствам для хранения и подачи жидкостей и может быть использовано для хранения и подачи компонентов топлива к потребителям на космических кораблях и летательных аппаратах. Предлагаемое устройство содержит раму с установленными на ней системой наддува и топливными...
Тип: Изобретение
Номер охранного документа: 0002301180
Дата охранного документа: 20.06.2007
19.04.2019
№219.017.3353

Способ подвода газообразного вещества в полость герметизируемого агрегата с ее герметизацией и фиксирующее устройство герметизируемого агрегата

Изобретения могут быть использованы в агрегатах с жесткими требованиями по герметичности внутренних полостей, например, в авиационной и космической технике. Способ подвода газообразного вещества в полость 7 герметизируемого агрегата с ее герметизацией включает сообщение штуцера 3 с магистралью...
Тип: Изобретение
Номер охранного документа: 0002430272
Дата охранного документа: 27.09.2011
Показаны записи 291-294 из 294.
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
09.06.2019
№219.017.7bd5

Электроракетная двигательная установка и способ ее эксплуатации

Изобретение относится к области электроракетных двигателей. В электроракетной двигательной установке, содержащей электроракетный двигатель, включающий разрядную камеру и катод, соединенный трубопроводом с баллоном, содержащим ксенон высокой чистоты, дополнительно установлена снабженная...
Тип: Изобретение
Номер охранного документа: 0002308610
Дата охранного документа: 20.10.2007
13.07.2019
№219.017.b3f9

Двухступенчатый двигатель с анодным слоем (варианты)

Изобретение относится к области электроракетных двигателей (ЭРД). Двухступенчатый двигатель с анодным слоем содержит катод - нейтрализатор, электромагнит, магнитопровод с полюсами, катод ускорительной ступени, который выполнен из графита, жестко связанные с магнитопроводом и расположенные...
Тип: Изобретение
Номер охранного документа: 0002406873
Дата охранного документа: 20.12.2010
10.08.2019
№219.017.bd68

Система хранения и подачи иода (варианты) и способ определения расхода и оставшейся массы иода в ней

Предложенная группа изобретений относится к области электроракетных двигателей (ЭРД), в частности к системам хранения и подачи в них рабочего тела. Система хранения и подачи иода (по первому варианту) содержит сообщенную с электроракетным двигателем трубопроводом с установленным на нем клапаном...
Тип: Изобретение
Номер охранного документа: 0002696832
Дата охранного документа: 06.08.2019
+ добавить свой РИД