×
27.06.2015
216.013.5a16

СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен способ тестирования лазерного устройства, предназначенного для проведения операций на глазах. Лазерное устройство снабжено контактным элементом, который прозрачен для лазерного излучения и имеет сопрягаемую поверхность для приведения в плотный контакт с глазом, подлежащим обработке. В процессе осуществления способа тестирования на сопрягаемую поверхность накладывают тест-объект, прозрачный для лазерного излучения по меньшей мере в области, соответствующей области обработки указанного объекта. Затем в тест-объект, упирающийся в сопрягаемую поверхность, вводят лазерное излучение при одновременном изменении положения фокуса в соответствии с заданным тестовым паттерном с целью формирования в тест-объекте визуально наблюдаемых структур. Технический результат - упрощение способа тестирования, который позволяет оценить точность позиционирования фокуса лазерного устройства для проведения операций на глазах. 19 з.п. ф-лы, 13 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к способам тестирования лазерного устройства, пригодного для обработки объектов и настраиваемого для испускания сфокусированного пучка импульсного лазерного излучения. Более конкретно, данные способы обеспечивают возможность оценивания точности позиционирования фокуса пучка лазерного излучения.

Уровень техники

Известно использование ультракоротких импульсов лазерного излучения (с длительностью в фемтосекундном диапазоне, расширяемом, когда это возможно, до единиц пикосекунд) для обработки объектов в толще их материала. Такой подход позволяет обеспечить вызываемый лазерным излучением оптический пробой в фокальной зоне и обусловленную этим фотодеструкцию, область которой ограничена фокальной зоной. Обязательным условием для данного процесса является прозрачность обрабатываемого объекта для лазерного излучения, которая, например, в случае проведения операции на человеческом глазу обеспечивается для длин волн более 300 нм. Для лазерных операций на человеческом глазу применяется фемтосекундное лазерное излучение, особенно для выполнения разрезов в роговице или в других тканях глаза, например в рамках метода LASIK (laser in-situ keratomileusis - лазерный интрастромальный кератомилез) с целью формирования лоскута в ходе удаления роговичного лентикула для образования лентикулярной внутрироговичной ламеллы или в рамках интрастромальной кератопластики для вырезания участка роговичной ткани, подлежащего замене или пересадке.

Во всех этих вариантах обработки необходима высокая точность позиционирования фокуса лазерного излучения по всем трем пространственным координатам внутри целевой ткани. Обычные современные требования к точности соответствуют погрешностям в несколько микрометров, причем в лучших случаях допуски на позиционирование составляют всего 1 или 2 мкм.

Фемтосекундные лазерные устройства, применяемые в лазерной хирургии на человеческом глазу, часто содержат сопрягающий блок (иногда именуемый адаптером для пациента), снабженный контактным элементом, прозрачным для лазерного излучения и имеющим контактную поверхность, которая должна быть приведена в пленарный контакт с поверхностью глаза или, в общем случае, с объектом, подлежащим обработке. Сопрягающий блок может, например, являться сменным модулем, присоединяемым к фокусирующей оптике лазерного устройства. Контактная поверхность контактного элемента может служить в качестве исходной (базовой) позиции для регулировки положения фокуса пучка излучения. Пока глаз остается прижатым к контактному элементу, имеется возможность точного воздействия на него при условии точной привязки положения фокуса к контактной поверхности.

Раскрытие изобретения

Изобретение имеет целью сделать для пользователя фемтосекундного лазерного устройства доступным рутинный тест, позволяющий легко оценить точность позиционирования фокуса, в частности в направлении распространения лазерного излучения (далее - z-направление). При этом желательно обеспечить простое документирование теста и его результатов.

В US 2006/0114469 A1 было предложено, в целях анализа пространственного положения и ориентации контактной поверхности контактного элемента, выполненного, как аппланационная пластина в составе лазерного устройства, перемещать фокус пучка излучения по заданным круговым траекториям и регистрировать посредством фотодетектора плазменные искры, возникающие, если фокус смещается с кромки аппланационной пластины на саму пластину.

В отличие от известного способа изобретение предлагает способ тестирования лазерного устройства, предназначенного для испускания сфокусированного пучка импульсного лазерного излучения. При этом положение фокуса указанного пучка регулируется в направлении распространения лазерного излучения и перпендикулярно ему. Лазерное устройство снабжено контактным элементом, который прозрачен для лазерного излучения и имеет сопрягаемую поверхность для приведения в плотный контакт с объектом, подлежащим обработке. Способ по изобретению включает следующие операции:

- наложение на сопрягаемую поверхность тест-объекта, прозрачного для лазерного излучения по меньшей мере в области, соответствующей области обработки указанного объекта, и

- введение лазерного излучения в тест-объект, упирающийся в сопрягаемую поверхность, при одновременном изменении положения фокуса в соответствии с заданным тестовым паттерном с целью формирования в тест-объекте долговременных структур.

Изобретение обеспечивает пользователю простой в осуществлении способ, посредством которого он может ежедневно, в рутинном режиме, определять, отвечает ли лазерное устройство требованиям, предъявляемым к точности позиционирования фокуса пучка излучения. Для проведения тестирования требуется подходящий тест-объект (контрольный образец), который по завершении тестирования может быть сохранен в рамках долговременного архивирования. Поскольку в ходе тестирования в тест-объекте формируются устойчивые (долговременные) структуры, впоследствии тест и его результаты можно легко реконструировать. Тест-объект может, например, иметь форму диска или пластинки. Подходящим, т.е. прозрачным для лазерного излучения, материалом тест-объекта является, например, полиметилметакрилат (ПММА), хотя вполне приемлемы и другие материалы, включая другие прозрачные (не поглощающие излучение) пластики.

Согласно варианту способа формируемые структуры включают одну или более обесцвеченных зон, создающих оптический контраст с окружающими их областями материала тест-объекта. Термин "обесцвечивание" в контексте изобретения не следует понимать как создание или изменение какого-то определенного цвета. Поскольку воздействие энергии излучения может привести к локальной фотодеструкции материала тест-объекта, эффект обесцвечивания может состоять, например, просто в локальном потемнении или в создании диффузно рассеивающего участка. Таким образом, обесцвечивание может состоять в локальном изменении яркости или степени серого для материала тест-объекта в результате определенного, инициированного лазерным излучением, изменения свойств материала. В любом случае, применительно к рассматриваемой конфигурации взаимодействие лазерного излучения с материалом тест-объекта приводит к созданию зоны, обнаруживаемой невооруженным глазом и/или системой распознавания изображения, использующей соответствующую камеру. При этом данная зона выделяется по оптическим свойствам из окружающих ее участков материала тест-объекта, т.е. создает оптический контраст с этими областями.

Формируемые структуры предпочтительно включают по меньшей мере одну первую обесцвеченную структуру, создающую оптический контраст с окружающими областями материала тест-объекта. Эта структура имеет протяженность внутри тест-объекта вдоль направления, пересекающего, в частности под острым углом, направление распространения лазерного излучения, и доходит до наружной поверхности тест-объекта, обращенной к сопрягаемой поверхности. Первая обесцвеченная структура может быть, например, образована полосчатым паттерном, состоящим из обесцвеченных полосок, следующих одна за другой вдоль направления протяженности указанной структуры. Альтернативно, первая обесцвеченная структура может быть образована плоской обесцвеченной поверхностью, расположенной наклонно по отношению к направлению распространения лазерного излучения и доходящей до наружной поверхности тест-объекта.

Если первая обесцвеченная структура сконфигурирована, как полосчатый паттерн, обесцвеченные полоски и плоскости, в которых они расположены, предпочтительно ориентированы ортогонально направлению распространения излучения. В этом случае расстояние между смежными полосками в направлении распространения излучения не превышает 10 мкм, предпочтительно 8 мкм, более предпочтительно 6 мкм, и составляет, например, 5 мкм. Кроме того, проекции смежных полосок на плоскость, ортогональную направлению распространения излучения, могут быть пространственно разделены. Однако в других вариантах при рассматривании указанных проекций смежных полосок пространственное разделение между проекциями смежных полосок может отсутствовать.

В предпочтительном варианте структуры, формируемые в тест-объекте, включают вторую обесцвеченную структуру, создающую оптический контраст с окружающими областями материала тест-объекта и образующую одну или более опорных меток для области прорезания первой обесцвеченной структурой наружной поверхности тест-объекта. По положению указанной области прорезания первой обесцвеченной структурой относительно опорных меток можно дать оценку калибровки лазерного устройства по координате z (z-калибровки). Опорные метки предпочтительно задают границы заданной области прорезания наружной поверхности тест-объекта первой обесцвеченной структурой. В зависимости от того, прорезает первая обесцвеченная структура наружную поверхность тест-объекта внутри или вне заданной области прорезания, тест может рассматриваться как успешный или неуспешный. Такая оценка является крайне простой как для пользователя, так и для автоматизированной оценивающей системы на базе камеры. Для удобства маркирования заданной области прорезания опорные метки могут, например, представлять собой пару взаимно параллельных и пространственно разделенных маркирующих линий.

Тестовый паттерн может обеспечивать возможность формирования третьей обесцвеченной структуры, создающей оптический контраст с окружающими областями материала тест-объекта и расположенной вдоль наружной границы заданного пространства, доступного для позиционирования фокуса, ортогонально к направлению распространения излучения. Пространство, доступное для позиционирования фокуса, соответствует максимально возможной области сканирования, в пределах которой положение фокуса пучка излучения может номинально настраиваться в плоскости, поперечной по отношению к направлению распространения излучения (далее именуемой плоскостью x-y). Границы этой области сканирования могут определяться, например, конструктивными или иными свойствами сканера, служащего для отклонения лазерного излучения по координатам x, y, и/или настройками системы управления. Часто максимально возможная область сканирования имеет в плоскости x-y форму круга. Наличие третьей обесцвеченной структуры, сформированной на наружной границе номинально доступной области сканирования по x, y, позволяет легко определить, действительно ли эта максимально возможная область может быть перекрыта сканером. Если в третьей обесцвеченной структуре появляются разрывы, это является указанием на то, что в зонах разрывов номинальная максимально возможная область сканирования не может быть реализована полностью.

В альтернативной конфигурации формируемые структуры могут включать одну или более поверхностей, образованных посредством разрезов, по которым тест-объект разделяется по меньшей мере на два частичных объекта, отделяемых друг от друга. Измеряя размеры по меньшей мере некоторых частичных объектов, также можно получить оценку точности позиционирования фокуса пучка излучения по координате z (z-позиционирования) и, следовательно, качества z-калибровки лазерного устройства. Такое измерение может быть проведено самим пользователем; альтернативно, оно может проводиться автоматически, посредством соответствующей измерительной системы.

Согласно следующей модификации образованные посредством разрезов поверхности могут выделять из наружной поверхности тест-объекта, упирающейся в сопрягаемую поверхность, частичный объект, например, в форме пластинки или диска. При этом выделенный частичный объект может иметь постоянную толщину или содержать взаимно смещенные участки различной толщины, образующие ступенчатый контур.

Тест-объект предпочтительно изготавливают по меньшей мере в зоне, подвергаемой действию излучения, из материала, прозрачного в видимом диапазоне длин волн и на длине волны лазерного излучения.

Тест-объект может быть выполнен однородным по меньшей мере в зоне, подвергаемой действию излучения. Альтернативно, тест-объект может иметь, по меньшей мере в зоне, подвергаемой действию излучения, многослойную конструкцию. В этом случае различные слои тест-объекта характеризуются различными реакциями взаимодействия с используемым лазерным излучением.

Чтобы удерживать в процессе тестирования тест-объект на контактном элементе, может быть использована сила присасывания. С этой целью контактный элемент или держатель, несущий контактный элемент, может быть сконструирован с одной или более камерами присасывания, которые открыты в сторону тест-объекта и воздух из которых может отсасываться откачивающим насосом.

Как уже упоминалось, тест-объект или его части могут длительно сохраняться после формирования в нем нужных структур. Архивирование прошедшего обработку тест-объекта (или его частей) целесообразно осуществлять вместе с ассоциированными с ними данными в отношении даты и/или времени проведения тестирования. Соответственно, впоследствии можно будет реконструировать, например, какой именно тест-объект ассоциирован с тестом, непосредственно предшествовавшим офтальмологической операции, и был ли этот тест успешным или нет.

Способ по изобретению может также предусматривать приведение лазерного устройства в готовность к воздействию лазером на человеческий глаз в случае признания результатов тестирования лазерного устройства успешным или запрет на использование лазерного устройства для воздействия лазером на человеческий глаз в случае признания результатов тестирования неуспешными. Эти действия могут быть реализованы программно управляемым блоком управления в составе лазерного устройства. При этом запрет на использование лазерного устройства может быть отменен, например, только в случае успешного завершения повторного теста. Определение того, был ли тест успешным или неуспешным, может производиться блоком управления, например, на основании входного сигнала, вводимого пользователем через средство ввода в составе лазерного устройства. С этой целью блок управления может, например, выдать пользователю, посредством выведения соответствующего сообщения на монитор, запрос на введение пользовательской оценки результата тестирования, например посредством клавиатуры, указательного средства или какого-либо иного варианта средства ввода. В зависимости от оценки, введенной пользователем, блок управления определит, был ли тест успешным, и соответственно обеспечит приведение лазерного устройства в готовность или предотвратит его использование. При архивировании тест-объекта может сохраняться и оценка тестирования, введенная пользователем.

В альтернативной конфигурации оценка результатов тестирования может производиться автоматически соответствующей системой измерения и оценивания.

Краткое описание чертежей

Далее изобретение будет подробно раскрыто со ссылками на прилагаемые чертежи.

На фиг.1 представлена упрощенная блок-схема устройства для лазерной обработки при проведении калибровочного теста согласно варианту изобретения.

На фиг.2 схематично проиллюстрирован вариант используемого в калибровочном тесте тест-объекта, в котором сформированы соответствующие структуры.

На фиг.3 иллюстрируются детали структур, сформированных в тест-объекте по фиг.2.

На фиг.4а-4 с схематично представлены результаты тестирования.

На фиг.5 представлен пример опорной маркировки, которая может быть сформирована на тест-объекте в рамках калибровочного теста, как часть выполненных на нем структур.

На фиг.6 представлен тест-объект со структурой согласно другому варианту.

На фиг.7а и 7b представлены результаты тестирования для тест-объекта с опорной маркировкой по фиг.5.

На фиг.8 представлен тест-объект согласно еще одному варианту.

На фиг.9: схематично проиллюстрирован пример разделения тест-объекта в рамках калибровочного теста на частичные объекты.

На фиг.10 представлен еще один пример разделенного тест-объекта.

Осуществление изобретения

Представленное на фиг.1 устройство для лазерной обработки (обозначенное в целом, как 10) используется для выполнения разрезов в человеческом глазу посредством лазерной технологии. Должно быть понятно, что данное приложение рассматривается только в качестве примера; в принципе, устройство 10 для лазерной обработки может использоваться и для других вариантов обработки.

Устройство 10 для лазерной обработки содержит лазер-источник 12, который испускает импульсный лазерный пучок 14 с длительностью импульсов в фемтосекундном диапазоне, например составляющей сотни фемтосекунд. Фокусирующая оптика 16 фокусирует лазерный пучок 14 в фокальную точку 18. Положение фокальной точки (фокуса) 18 пучка в направлении распространения пучка (z-направлении), а также в плоскости, перпендикулярной этому направлению (в плоскости x-y), может регулироваться посредством сканирующих компонентов 20 (которые, для большей наглядности, представлены на фиг.1 в виде единого функционального блока-сканера). Управление лазером-источником 12 и сканирующими компонентами 20 может осуществляться программно управляемым блоком 22 управления, с которым связаны также монитор 24 и средство 26 ввода (например клавиатура, указательное средство и т.д.).

Для целей точного позиционирования при введении лазерного излучения в глаз, подлежащий воздействию, устройство 10 для лазерной обработки снабжено сопрягающим блоком (пациентским адаптером) 28, который съемным образом крепится к корпусу фокусирующей оптики 16 и который содержит контактный элемент 30, прозрачный для лазерного излучения, и держатель 32 этого элемента. В представленном варианте контактный элемент 30 выполнен в виде плоскопараллельной аппланационной пластины; однако его сторона, обращенная к глазу, и/или противоположная сторона может быть выполнена неплоской, например вогнутой или выпуклой. Сторона контактного элемента 30, обращенная к глазу, образует сопрягаемую поверхность 34, которая может служить базовой поверхностью для расчета положения глаза, подлежащего воздействию. Для осуществления такого воздействия глаз сначала приводится в плотный контакт с контактной поверхностью 34. С этой целью сначала на глаз может быть известным образом установлено присасывающееся кольцо (не изображено), которое способно, например, за счет сил присасывания прочно соединяться с сопрягающим блоком 28.

Сопрягаемая поверхность 34 контактного элемента 30 задает базовую (опорную) точку по координате z, что обеспечивает возможность прецизионного позиционирования фокуса 18 пучка внутри объекта, подлежащего обработке. Для целей оценивания качества z-калибровки устройства 10 для лазерной обработки блок 22 управления выполнен с возможностью запускать калибровочный тест, в процессе которого в тест-объекте 36, наложенном на сопрягаемую поверхность 34, формируют тестовые структуры посредством лазерного пучка 14. Эти структуры становятся постоянными элементами тест-объекта 36, что обеспечивает перманентное документирование результата тестирования. По завершении тестирования обработанный тест-объект 36 (или по меньшей мере его часть) хранится в архиве, схематично представленном, как блок 38. На фиг.1 показаны некоторые тест-объекты, которые уже помещены в архив 38 и которые, чтобы отличить их от тест-объекта 36, подлежащего обработке, т.е. находящегося в контакте с сопрягаемой поверхностью 34, обозначены как 36′.

Для формирования тестовых структур программа управления (не рассматриваемая подробно), имеющаяся в блоке 22 управления, содержит соответствующие команды, обеспечивающие перемещение фокуса 18 пучка в соответствии с заданным тестовым паттерном сканирования. Согласно первой конфигурации взаимодействие лазерного излучения с материалом тест-объекта 36 приводит к долговременному локальному обесцвечиванию тест-объекта 36 с образованием в нем паттерна обесцвечивания, соответствующего тестовому паттерну сканирования. Применительно к тест-объекту 36, прозрачному в видимом диапазоне длин волн и к лазерному излучению, эффект обесцвечивания может, например, состоять в том, что материал тест-объекта 36 в фокальной зоне становится диффузно рассеивающим свет. В другой конфигурации тестовый паттерн сканирования приводит к возникновению в тест-объекте 36 разрезов, в частности разрезов, приводящих к разделению тест-объекта 36 на несколько частичных объектов. С целью документирования результатов тестирования в архиве 38 могут храниться все частичные объекты или только некоторые из них.

Тест-объектом 36 может являться, например, элемент в форме пластинки из ПММА, которая удерживается на сопрягающем блоке 28 силой присасывания. С этой целью сопрягающий блок 28 может быть снабжен вакуумным портом (не изображен), к которому через линию 40 откачки может быть подсоединен откачивающий насос 42.

Далее будут рассмотрены фиг.2 и 3. На них представлены обесцвеченные структуры, которые, согласно данному варианту, могут быть созданы в тест-объекте 36 посредством фемтосекундного лазерного излучения, генерируемого устройством 10 для лазерной обработки. Обесцвеченные структуры образуют паттерн в основном в виде полосок, взаимно смещенных в z-направлении в форме "лесенки" (т.е. состоящий из обесцвеченных полосок 44, каждая из которых ориентирована параллельно плоскости x-y), а также из двух опорных меток 46, которые расположены взаимно параллельно и с взаимным смещением параллельно плоскости x-y. В представленном примере на виде в плоскости x-y эти метки выглядят как отрезки прямых линий. Независимо от конкретного выполнения, две опорные метки 46 можно сформировать как двумерные опорные полоски или опорные плоские участки, имеющие соответствующее протяжение в z-направлении. Однако с учетом того, что в плоскости x-y две опорные метки 46 имеют вид линий, они будут именоваться далее опорными линиями. Между этими опорными линиями 46 задается область 47 прорезания, в которой, при соответствующей z-калибровке устройства 10 для лазерной обработки, полосчатый паттерн, образуемый обесцвеченными полосками 44, должен прорезать наружную поверхность (обозначенную на фиг.2 как 48) тест-объекта, обращенную в сторону сопрягаемой поверхности 34. Соответственно, тестовый паттерн сканирования конструируется таким образом, чтобы при правильной z-калибровке устройства 10 для лазерной обработки последняя (при наблюдении в направлении подъема "лесенки") видимая обесцвеченная полоска 44 находилась внутри заданной области 47 прорезания. Эта ситуация проиллюстрирована на фиг.4а. На фиг.4b и 4с, напротив, иллюстрируются примеры неправильной z-калибровки устройства 10 для лазерной обработки, в которых "лестничный" паттерн обесцвеченных полосок 44 прорезает наружную поверхность 48 тест-объекта 36 в одном случае (на фиг.4b) перед заданной областью 47 прорезания, очерченной опорными линиями 46, а в другом случае (фиг.4с) за ней. Зная градиент "лестничного" паттерна, в примерах по фиг.4b и 4с, нетрудно определить необходимую степень коррекции для корректирования z-калибровки устройства 10 для лазерной обработки. Альтернативно, может быть принято решение о том, чтобы завершить осуществление способа.

Z-расстояние между обесцвеченными полосками 44 (обозначенное на фиг.3 как d1) может составлять, например, 5 мкм. При таком выборе значения d1 можно гарантировать, что положение фокуса пучка может быть задано и проверено с погрешностью в z-направлении, не превышающей 5 мкм.

Ширина полоски (обозначенная на фиг.3 как d2) составляет, например, около 250 мкм. Расстояние между обесцвеченными полосками 44 в проекции на плоскость х-у (обозначенное на фиг.3 как d3) может, например, соответствовать ширине d2 полоски, т.е. в данном случае также составлять около 250 мкм. Расстояние между опорными линиями 46 (обозначенное на фиг.3 как d4) в представленном примере в 4 раза превышает ширину d2 полоски. Если ширина полоски равна 250 мкм, значение d4 соответственно составляет 1000 мкм. Зная градиент (равный, например, 5 мкм/500 мкм), можно рассчитать погрешность калибровки.

Для генерирования обесцвеченных полосок 44 в тест-объекте 36 тестовый паттерн сканирования задает "лестничный" паттерн, который состоит из ступенек, соответствующих обесцвеченным полоскам 44. При этом каждая ступенька "лесенки" может быть образована несколькими расположенными вплотную линиями сканирования, ориентированными по длине ступенек. Должно быть понятно, что только те ступеньки "лесенки" в составе "лестничного" паттерна сканирования, которые локализованы в материале тест-объекта 36, сформируют соответствующие обесцвеченные полоски 44 в тест-объекте 36. Как правило, некоторая часть ступенек "лесенки" данного паттерна сканирования окажется вне тест-объекта 36, даже при небольшой погрешности калибровки устройства 10 в z-направлении. Такие ступеньки "лестничного" паттерна сканирования, находящиеся вне тест-объекта 36, представлены на фиг.2 пунктирными линиями и обозначены как 44'.

Обесцвеченные структуры, сформированные в тест-объекте 36, дополнительно включают окружность 50, которая расположена, по существу, параллельно плоскости х-у и может, например, соответствовать максимальной зоне сканирования по координатам х, у, обеспечиваемой устройством 10 для лазерной обработки. Альтернативно, эта окружность может соответствовать указанной максимальной зоне сканирования, но со смещением относительно внешних границ этой зоны. В частности, окружность 50 может быть сформирована с диаметром, соответствующим типичному размеру лоскута роговицы, вырезаемого посредством лазера по методу фемто-LASIK. Обычные диаметры лоскута лежат в интервале 9-11 мм. Соответственно, окружность 50 может иметь, например, диаметр 10 мм или 11 мм. Если данная окружность может наблюдаться в тест-объекте 36 в виде замкнутого обесцвеченного кольца, без каких-либо искажений, это свидетельствует о том, что по меньшей мере зона сканирования, требуемая для формирования лоскута, доступна без каких-либо ограничений.

На фиг.5 представлен вариант, в котором обесцвеченный паттерн, сформированный в тест-объекте 36, включает две пары опорных линий 46, которые в проекции на плоскость х-у взаимно перпендикулярны. Наличие этих линий позволяет формировать в тест-объекте 36 обесцвеченные паттерны в форме "лесенки" или иные паттерны в двух взаимно перпендикулярных направлениях.

Как альтернатива паттерну в форме "лесенки", на фиг.6 показана плоская обесцвеченная поверхность 52, которая на фиг.6 (соответствующей сечению плоскостью x-z) имеет вид прямой линии. Обесцвеченная поверхность 52 может быть, например, получена посредством множества линий сканирования фокуса пучка, расположенных смежно и взаимно параллельно в плоскости обесцвеченной поверхности 52. Совокупность этих линий сканирования образует плоский паттерн сканирования, части которого, находящиеся вне тест-объекта 36, представлены на фиг.6 пунктирной линией 52'. Аналогично варианту с обесцвеченными полосками 44, точность калибровки устройства 10 для лазерной обработки может быть оценена по положению линии, вдоль которой обесцвеченная поверхность 52 прорезает наружную поверхность 48 тест-объекта 36. Концепция прорезания должна восприниматься с определенными оговорками, поскольку ступенчатый паттерн, образованный обесцвеченными полосками 44, а также обесцвеченная поверхность 52, разумеется, не продолжаются вне тест-объекта 36. Однако наблюдателю, рассматривающему наружную поверхность 48, эта поверхность представляется прорезанной полосчатым паттерном или обесцвеченной поверхностью 52.

На фиг.7а и 7b проиллюстрирован вариант (относящийся к тест-объекту с двумя взаимно перпендикулярными парами опорных линий 46, как и в варианте по фиг.5), в котором каждой паре опорных линий соответствует плоская обесцвеченная поверхность, аналогичная показанной на фиг.6.

На фиг.7а, 7b можно различить линии сканирования, вдоль которых следовал фокус пучка для формирования обесцвеченной поверхности. Эти линии (обозначенные как 54) расположены достаточно близко одна к другой, чтобы для наблюдателя они представлялись двумерной обесцвеченной зоной. На обеих фиг.7а и 7b соответствующая обесцвеченная поверхность прорезает наружную поверхность тест-объекта 36 в определенной области, заключенной между соответствующей парой опорных линий, что соответствует правильной калибровке.

В варианте, показанном на фиг.8, тест-объект 36 имеет многослойную конструкцию и, в частности, содержит промежуточный слой 56, состоящий из материала, отличающегося от материала, образующего зоны тест-объекта 36, расположенные в z-направлении выше и ниже этого слоя. Материал промежуточного слоя 56 имеет реакцию взаимодействия с лазерным излучением, воздействующим на тест-объект в рамках калибровочного теста, отличную от реакции остальных зон тест-объекта 36. Например, взаимодействие лазерного излучения с материалом промежуточного слоя 56 приводит к обесцвечиванию, отличному от обесцвечивания остальных зон тест-объекта 36. При известном z-расстоянии промежуточного слоя 56 от наружной поверхности 48 тест-объекта 36 знание расстояния между точками прорезания обесцвеченной поверхностью 52 наружной поверхности 48 и промежуточного слоя 56 позволяет оценить не только качество z-калибровки в отношении возможного z-смещения, но и правильность масштаба по оси z системы координат, используемой устройством 10 для лазерной обработки. Для целей однозначного определения точки прорезания обесцвеченной поверхностью 52 промежуточного слоя 56 может оказаться желательным сконструировать тест-объект 36 с полированной боковой поверхностью, имеющей прямолинейную образующую, чтобы при наблюдении сбоку можно было легко различить обесцвеченную поверхность 52 и промежуточный слой 56. С этой целью тест-объекту 36 можно придать, например, форму половины или четверти диска.

На фиг.9 и 10 показаны, без соблюдения масштаба, два варианта, в которых структуры, создаваемые в тест-объекте 36, образуют разрезы, приводящие к разделению тест-объекта 36 на частичные объекты 36а, 36b. Так, из наружной поверхности 48 тест-объекта может быть вырезан частичный объект в форме пластинки (фиг.9) или в форме лесенки (фиг.10). Измеряя толщину вырезанного частичного объекта 36b по координате z, можно сделать выводы в отношении точности z-калибровки устройства 10 для лазерной обработки. Измерение толщины может производиться, например, с использованием соответствующих оптических, акустических или механических измерительных средств. Как альтернатива измерению частичного объекта 36b, можно измерять глубину (по координате z) выреза в поверхности, образованного в частичном объекте 36а, остающемся в результате отделения от него частичного объекта 36b.

После того как в тест-объекте 36 будут сформированы нужные структуры, блок 22 управления в составе устройства 10 сможет вывести на монитор 24 запрос к пользователю на введение, посредством средства 26 ввода, указания, был или не был калибровочный тест успешным. В зависимости от введенного пользователем указания, блок 22 управления сделает возможным или невозможным применение лазерного устройства 10 для последующих глазных операций.

В предпочтительном варианте могут быть предусмотрены меры для предотвращения опасности вдыхания паров и/или частиц, которые могут появляться в процессе формирования структур в тест-объекте.


СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
СПОСОБ ТЕСТИРОВАНИЯ ЛАЗЕРНОГО УСТРОЙСТВА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 50.
10.01.2013
№216.012.174f

Устройство для обработки материала, используемое, в частности, в рефракционной хирургии

Изобретение относится к медицине и медицинской технике, в частности к устройствам для срезания лоскута в процессе рефракционной хирургии глаза методом лазерного интрастромального кератомилеза. Устройство содержит импульсный источник, генерирующий лазерный пучок, средства, фокусирующие лазерный...
Тип: Изобретение
Номер охранного документа: 0002471459
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.22c7

Устройство для проведения офтальмологической, в частности рефракционной, лазерной хирургической операции

Изобретение относится к медицине и медицинской технике, а именно к устройству для проведения рефракционной лазерной операции. Устройство содержит первый источник излучения для формирования терапевтического лазерного пучка, первые средства позиционирования пучка, испускаемого указанным...
Тип: Изобретение
Номер охранного документа: 0002474405
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.244d

Измерительное устройство для измерения параметров сфокусированного лазерного пучка

Изобретение относится к области оптических измерений. Устройство содержит линзовую систему увеличения, образованную двумя линзами (10, 12), установленными последовательно, с совпадающими фокусами на траектории лазерного пучка, а также камеру (74), расположенную за этими линзами в фокусе...
Тип: Изобретение
Номер охранного документа: 0002474795
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.2f3e

Устройство для лазерно-оптической хирургии глаза

Группа изобретений относится к медицине и медицинской технике, и именно, к устройствам и способам для лазерной хирургии глаза. Устройство содержит источник импульсного фемтосекундного лазерного излучения и оптические компоненты, направляющие лазерное излучение и фокусирующие его на оперируемый...
Тип: Изобретение
Номер охранного документа: 0002477629
Дата охранного документа: 20.03.2013
27.04.2013
№216.012.3924

Аппарат для вырезания части ткани сфокусированным лазерным излучением

Изобретение относится к медицинской технике, в частности к аппаратам для вырезания лоскута из роговичной ткани в ходе рефракционной хирургии. Аппарат содержит источник сфокусированного лазерного излучения, присасывающееся кольцо, выполненное с возможностью наложения своей герметизирующей...
Тип: Изобретение
Номер охранного документа: 0002480189
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3925

Устройство для проведения офтальмологической, в частности рефракционной, лазерной хирургической операции

Группа изобретений относится к медицине и медицинской технике, а именно к устройствам для проведения офтальмологических хирургических операций. Аппарат для рефракционной лазерной хирургии содержит лазерный источник для испускания сфокусированного операционного лазерного пучка, измерительное...
Тип: Изобретение
Номер охранного документа: 0002480190
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.3f70

Устройство, способ и программа управления для проведения офтальмологической, в частности рефракционной, лазерной хирургической операции

Группа изобретений относится к медицине и медицинской технике, к офтальмологической, в частности рефракционной, лазерной хирургии. Аппарат для лазерной хирургии содержит источник лазерного пучка, средства позиционирования пучка, испускаемого указанным источником, для пространственного и...
Тип: Изобретение
Номер охранного документа: 0002481810
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.4f6a

Способ обеспечения контакта глаза с лазерным устройством

Группа изобретений относится к медицине и медицинской технике, в частности к способу присоединения механического сопрягающего блока лазерного устройства к стабилизирующему компоненту, удерживаемому на биологической ткани усилием ее присасывания, и к аппарату для разрезания части глаза...
Тип: Изобретение
Номер охранного документа: 0002485923
Дата охранного документа: 27.06.2013
20.08.2013
№216.012.5f2d

Способ калибровки энергии импульса лазерного устройства с использованием когерентного оптического интерферометра

Группа изобретений относится к медицинской технике. Согласно способу калибровки энергии импульса лазерного устройства, генерирующего рабочее импульсное лазерное излучение, посредством рабочего лазерного излучения осуществляют многократные тестовые абляции, преимущественно тестовые абляции...
Тип: Изобретение
Номер охранного документа: 0002489997
Дата охранного документа: 20.08.2013
20.11.2013
№216.012.8159

Устройство для воздействия на глаз лазерным излучением

Изобретение относится к медицинской технике. Устройство содержит: лазерный источник для генерирования лазерного излучения; средство для направления лазерного излучения на глаз для офтальмологического вмешательства на поверхности или внутри глаза; аппликатор, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002498789
Дата охранного документа: 20.11.2013
Показаны записи 1-10 из 52.
10.01.2013
№216.012.174f

Устройство для обработки материала, используемое, в частности, в рефракционной хирургии

Изобретение относится к медицине и медицинской технике, в частности к устройствам для срезания лоскута в процессе рефракционной хирургии глаза методом лазерного интрастромального кератомилеза. Устройство содержит импульсный источник, генерирующий лазерный пучок, средства, фокусирующие лазерный...
Тип: Изобретение
Номер охранного документа: 0002471459
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.22c7

Устройство для проведения офтальмологической, в частности рефракционной, лазерной хирургической операции

Изобретение относится к медицине и медицинской технике, а именно к устройству для проведения рефракционной лазерной операции. Устройство содержит первый источник излучения для формирования терапевтического лазерного пучка, первые средства позиционирования пучка, испускаемого указанным...
Тип: Изобретение
Номер охранного документа: 0002474405
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.244d

Измерительное устройство для измерения параметров сфокусированного лазерного пучка

Изобретение относится к области оптических измерений. Устройство содержит линзовую систему увеличения, образованную двумя линзами (10, 12), установленными последовательно, с совпадающими фокусами на траектории лазерного пучка, а также камеру (74), расположенную за этими линзами в фокусе...
Тип: Изобретение
Номер охранного документа: 0002474795
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.2f3e

Устройство для лазерно-оптической хирургии глаза

Группа изобретений относится к медицине и медицинской технике, и именно, к устройствам и способам для лазерной хирургии глаза. Устройство содержит источник импульсного фемтосекундного лазерного излучения и оптические компоненты, направляющие лазерное излучение и фокусирующие его на оперируемый...
Тип: Изобретение
Номер охранного документа: 0002477629
Дата охранного документа: 20.03.2013
27.04.2013
№216.012.3924

Аппарат для вырезания части ткани сфокусированным лазерным излучением

Изобретение относится к медицинской технике, в частности к аппаратам для вырезания лоскута из роговичной ткани в ходе рефракционной хирургии. Аппарат содержит источник сфокусированного лазерного излучения, присасывающееся кольцо, выполненное с возможностью наложения своей герметизирующей...
Тип: Изобретение
Номер охранного документа: 0002480189
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3925

Устройство для проведения офтальмологической, в частности рефракционной, лазерной хирургической операции

Группа изобретений относится к медицине и медицинской технике, а именно к устройствам для проведения офтальмологических хирургических операций. Аппарат для рефракционной лазерной хирургии содержит лазерный источник для испускания сфокусированного операционного лазерного пучка, измерительное...
Тип: Изобретение
Номер охранного документа: 0002480190
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.3f70

Устройство, способ и программа управления для проведения офтальмологической, в частности рефракционной, лазерной хирургической операции

Группа изобретений относится к медицине и медицинской технике, к офтальмологической, в частности рефракционной, лазерной хирургии. Аппарат для лазерной хирургии содержит источник лазерного пучка, средства позиционирования пучка, испускаемого указанным источником, для пространственного и...
Тип: Изобретение
Номер охранного документа: 0002481810
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.4f6a

Способ обеспечения контакта глаза с лазерным устройством

Группа изобретений относится к медицине и медицинской технике, в частности к способу присоединения механического сопрягающего блока лазерного устройства к стабилизирующему компоненту, удерживаемому на биологической ткани усилием ее присасывания, и к аппарату для разрезания части глаза...
Тип: Изобретение
Номер охранного документа: 0002485923
Дата охранного документа: 27.06.2013
20.08.2013
№216.012.5f2d

Способ калибровки энергии импульса лазерного устройства с использованием когерентного оптического интерферометра

Группа изобретений относится к медицинской технике. Согласно способу калибровки энергии импульса лазерного устройства, генерирующего рабочее импульсное лазерное излучение, посредством рабочего лазерного излучения осуществляют многократные тестовые абляции, преимущественно тестовые абляции...
Тип: Изобретение
Номер охранного документа: 0002489997
Дата охранного документа: 20.08.2013
20.11.2013
№216.012.8159

Устройство для воздействия на глаз лазерным излучением

Изобретение относится к медицинской технике. Устройство содержит: лазерный источник для генерирования лазерного излучения; средство для направления лазерного излучения на глаз для офтальмологического вмешательства на поверхности или внутри глаза; аппликатор, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002498789
Дата охранного документа: 20.11.2013
+ добавить свой РИД