×
27.06.2015
216.013.5a0c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ

Вид РИД

Изобретение

Аннотация: Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм. Технический результат: повышение экспрессности и надежности при определении глинистых минералов. 1 табл., 6 ил.
Основные результаты: Способ определения глинистых минералов, включающий отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, отличающийся тем, что для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм.

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ, требующих определения глинистых минералов, таких как каолинит, диккит, монтмориллонит, пекораит, накрит и др.

Глинистые минералы широко распространены в продуктах выветривания горных пород и рудных месторождений. Они слагают рыхлые или плотные агрегаты, содержащие обычно не один, а несколько глинистых минералов, и нередко минералы других классов соединений. Определение минерального состава таких полиминеральных тонкозернистых образований обычными методами с выделением монофракций каждого минерала весьма затруднительно. Однако это всегда необходимо как при решении генетических вопросов, так и сугубо практических. Глинистые минералы в зависимости от структуры, определяющей их видовую принадлежность, имеют достаточно различные технические характеристики, например, разную адсорбционную способность. В зависимости от этого их потребителями становятся разные отрасли. Для одних это производство керамики, для других - нефтяная промышленность и т.д. Некоторые глинистые минералы могут выступать даже в качестве рудных. Поэтому для оценки практической значимости глинистых образований необходим анализ их минерального состава. Кроме того, присутствие глинистых минералов в составе руд цветных металлов может заметно ухудшать их технологические свойства. Учитывая визуальное сходство глинистых минералов с минералами других классов, соединений с другими свойствами, минералогический анализ глинистых образований и в этом случае становится актуальным. Известен минералогический способ определения глинистых минералов с помощью рентгеноструктурного анализа, заключающийся в том, что для исследуемых проб снимают рентгенограммы, после расшифровки которых с использованием диагностических таблиц определяют минералы, входящие в состав данной пробы (Михеев В.И. Рентгенометрический определитель минералов/М. Гос. Научно-техническое изд-во литературы по геологии и охране недр.- 1957- С. 375-376). Недостатком способа является тот факт, что для определения глинистых минералов требуется специальная длительная пробоподготовка, заключающаяся в длительном отмучивании пробы, прокаливании и последующей съемке с глицерином.

Известен также термический способ определения глинистых минералов, заключающийся в изучении превращений, происходящих в условиях нагревания в минералах при различных физических и химических процессах по сопровождающим их тепловым эффектам. Физические процессы связаны с изменением структуры или агрегатного состояния вещества без изменения его химического состава. Химические процессы приводят к изменению химического состава вещества. К таковым относятся дегидратация, диссоциация, окисление, реакция обмена и др. Каждому превращению, протекающему в образце, соответствует свой термический эффект. Совокупность всех термических эффектов при соответствующих температурах является индивидуальной характеристикой данного минерала, которая отражает особенности всех происходящих в нем превращений. Недостатком данного метода является сложность учета всех факторов, влияющих на результат анализа, таких как скорость нагревания, величина навески, степень дисперсии и плотности набивки образца в тигле, чувствительность в цепи дифференциальной термопары, свойства эталона, атмосфера печного пространства и др. Без стандартизации вышеперечисленных факторов можно получить неправильное представление о степени совершенства структуры, кристалличности, изоморфных превращений в минералах (Топор Н.Д., Огородова Л.П., Мельчакова Л.В. Термический анализ минералов и неорганических соединений. - М.: Изд-во МГУ, 1987. - 190 с.). Известен люминесцентный анализ минералов, заключающийся в том, что в минералах возбуждают люминесценцию, получают спектры излучения в оптическом диапазоне длин волн и по спектральным характеристикам люминесценции производят диагностику минерала (Б.С.Горобец, А.А. Рогожин. Спектры люминесценции минералов. Москва. 2001. С.67, 95). Положительным в известном способе является то, что авторами дан наиболее полный справочник по люминесценции минералов. Недостаток заключается в полном отсутствии сведений о люминесцентной диагностике глинистых минералов.

Известен способ определения состава минералов и дальнейшего их сравнения по химическому составу с помощью электронно-зондового микроанализа, выполняемого на электронном микроскопе, который позволяет определять химический состав материала в отдельных точках. Недостатком известного метода является сложность пробоподготовки (изготовление специальных шашек из исследуемого материала, длительность такого изготовления), анализ только отдельных точек в исследуемом материале и получение информации лишь о химическом составе при отсутствии сведений о структуре минерала, что не позволяет однозначно определить его минеральный вид.

Известен рентгенофлюоресцентный анализ образцов (РФА), который позволяет проводить точный анализ химического состава материала образца. В рентгенофлюоресцентном анализе пробу подвергают действию первичного рентгеновского излучения трубки. Вещество бомбардируется пучком заряженных частиц - фотонов высокой энергии. При этом регистрируется вторичное рентгеновское излучение и по нему определяется состав образца. Недостатком данного метода является трудоемкая и длительная пробоподготовка (изготовление таблеток), большое количество исследуемого материала (порядка 100 мг) и также отсутствие сведений о структуре минерала.

Наиболее близким по техническому решению является способ разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений (патент RU 2444724, опубл. 10.03.2012, G01N23/223), заключающийся в том, что возбуждают люминесценцию в оптическом диапазоне длин волн, снимают спектр рентгенолюминесценции в диапазоне длин волн 400-800 нм и по спектральному составу излучения определяют минералы (прототип). Недостатком данного способа является тот факт, что для изучения глинистых минералов спектральный диапазон 400-800 нм оказывается менее информативным, чем коротковолновое излучение.

Задачей настоящего изобретения является разработка способа определения глинистых минералов с помощью люминесцентного анализа с целью повышения экспрессности и надежности при определении глинистых минералов.

Поставленная задача решается тем, что, согласно прототипу, осуществляется пробоподготовка глинистого минерала и возбуждение в нем люминесценции в оптическом диапазоне длин волн, но в отличие от прототипа спектр люминесценции исследуемой пробы снимается в интервале длин волн 200-500 нм. Выбор спектрального диапазона 200-500 нм обусловлен тем, что именно в этом диапазоне происходит максимальное излучение за счет кислородных возбужденных состояний, в основном, на базе кремне- и алюмокислородных тетраэдров, характерных для большинства глинистых минералов.

Авторами изобретения экспериментально установлено, что спектральный состав излучения в зависимости от степени кристалличности и упорядоченности глинистого минерала, так же как и положение максимума в спектральном диапазоне 200-500 нм будут меняться. Следовательно, глинистые минералы будут иметь различные спектры люминесценции (Рисунок 1). Из рисунка 1 следует, что каолинит характеризуется широкими перекрывающими друг друга полосами излучения в интервале длин волн 290-400 нм с максимальным излучением при λ=335-357 нм. Из того же рисунка 1 следует, что диккит характеризуется максимальным высвечиванием в интервале длин волн 350-370 нм. Причем интенсивность излучения диккита значительно превосходит излучение каолинита, монтмориллонита и пекораита. Из того же рисунка 1 следует, что для накрита характерна широкая полоса рентгенолюминесценции в диапазоне 270-500 нм с максимальным излучением при λ=338-340 нм. Спектры люминесценции, представленные на рисунке 1, снимались при рентгеновском возбуждении (спектры рентгенолюминесценции) с помощью аппарата УРС-55, рентгеновской трубки БСВ-2 и монохроматора МДР-12. Достоверность определений минералов была подтверждена рентгеноструктурным анализом:

1. отбирают пробы глинистых минералов из исследуемых объектов;

2. делают протолочки;

3. готовят навески по 10-15 мг;

4. для каждой приготовленной пробы снимают спектр люминесценции в оптическом диапазоне длин волн 200-500 нм;

5. по положению максимума в спектральном диапазоне длин волн 200-500 нм определяют минерал.

Ниже приведены примеры конкретного осуществления изобретения.

Исследования проводились на образцах глинистых минералов из фондов минералогического музея Томского государственного университета. В качестве источника возбуждения люминесценции использовался аппарат УРС-55 и рентгеновская трубка БСВ-2. Получаемые при этом возбуждении спектры рентгенолюминесценции снимались с помощью монохроматора МДР-12. Интенсивность излучения дана в условных единицах. Причем 1 условная единица в данном случае примерно равна 10-3 нит. Приготовлено 6 проб глинистых минералов. Для всех проб снимались спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и проводился сравнительный анализ полученных спектров рентгенолюминесценции с последующим определением минерала с учетом графиков, представленных на рисунке 1.

Пример 1

Отобрали пробу глинистого минерала (проба №1). Сделали протолочку. Приготовили навеску пробы №1 (10 мг). С помощью рентгеновского аппарата УРС-55 и рентгеновской трубки БСВ-2 возбудили люминесценцию в оптическом диапазоне длин волн.

Записали спектр рентгенолюминесценции в диапазоне длин волн 200-500 нм. Обнаружили, что спектральный состав излучения пробы №1 аналогичен спектральному составу излучения каолинита на рисунке 1. По наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, что видно из рисунка 2, определили минерал каолинит. Достоверность определения подтверждена данными рентгеноструктурного анализа: 7,16(10)-3,57(8)-2,32(6) -1,66(8)-1,266(6)-1,24(6) -4,47(4), что соответствует рентгенограмме каолинита (таблица 1).

Пример 2

Отобрали пробу глинистого минерала (проба №2). Сделали протолочку. Приготовили навеску пробы №2 (10 мг). Описанным выше способом возбудили люминесценцию в оптическом диапазоне длин волн. Записали спектр рентгенолюминесценции в диапазоне длин волн 200-500 нм. Обнаружили, что спектральный состав излучения пробы №2 аналогичен спектральному составу излучения диккита на рисунке 1. Затем по максимальному излучению при λ=350-370 нм, что видно из рисунка 2, определили минерал диккит. Достоверность определения подтверждена данными рентгеноструктурного анализа: 7,21(10)-3,61(7)-4,13(6) -2,37(6)-3,80(4), что соответствует рентгенограмме диккита (таблица 1).

Пример 3

Отобрали пробу глинистого минерала из отложений белой каолиновой глины на берегу р. Томь, г. Томск (проба №3). Сделали протолочку. Приготовили навеску пробы №3 (10 мг). Описанным выше способом возбудили люминесценцию в оптическом диапазоне длин волн. Записали спектр рентгенолюминесценции в диапазоне длин волн 200-500 нм. Обнаружили, что спектральный состав излучения пробы №3 аналогичен спектральному составу излучения каолинита на рисунке 1. По наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, что видно из рисунка 3, определили минерал каолинит. Достоверность определения подтверждена данными рентгеноструктурного анализа: 7,16(10)-3,57(8)-2,32(6) -1,66(8)-1,266(6)-1,24(6) -4,47(4), что соответствует рентгенограмме каолинита (таблица 1).

Пример 4

Отобрали пробу глинистого минерала (проба №4). Сделали протолочку. Приготовили навеску пробы №4 (10 мг). Описанным выше способом возбудили люминесценцию в оптическом диапазоне длин волн. Записали спектр рентгенолюминесценции в диапазоне длин волн 200-500 нм. Обнаружили, что спектральный состав излучения пробы №4 аналогичен спектральному составу излучения монтмориллонита на рисунке 1. По наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, что видно из рисунка 4, определили минерал монтмориллонит. Достоверность определения подтверждена данными рентгеноструктурного анализа:14.8(10)-4.53(8)-3.06(7)-2.51(6), что соответствует рентгенограмме монтмориллонита (таблица 1).

Пример 5

Отобрали пробу глинистого минерала (проба №5). Сделали протолочку. Приготовили навеску пробы №5 (10 мг). Описанным выше способом возбудили люминесценцию в оптическом диапазоне длин волн. Записали спектр рентгенолюминесценции в диапазоне длин волн 200-500 нм. Обнаружили, что спектральный состав излучения пробы №5 аналогичен спектральному составу излучения пекораита на рисунке 1. По наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, что видно из рисунка 5, определили минерал пекораит. Достоверность определения подтверждена данными рентгеноструктурного анализа:7.28(10)-4.58(4)-3.63(8)-2.64(4)-2.48(4)-1.53(8), что соответствует рентгенограмме пекораита (таблица 1).

Пример 6

Отобрали пробу глинистого минерала (проба №6). Сделали протолочку. Приготовили навеску пробы №6 (10 мг). Описанным выше способом возбудили люминесценцию в оптическом диапазоне длин волн. Записали спектр рентгенолюминесценции в диапазоне длин волн 200-500 нм. Обнаружили, что спектральный состав излучения пробы №6 аналогичен спектральному составу излучения накрита на рисунке 1. По наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=338-340 нм, что видно из рисунка 6, определили минерал накрит. Достоверность определения подтверждена данными рентгеноструктурного анализа: 7.17(10)-4.42(8), 4.16(5)- 3.58(7)-2.42(6), что соответствует рентгенограмме накрита (таблица 1).

Таким образом, предложенный способ определения глинистых минералов с помощью рентгенолюминесцентного анализа позволяет быстро и надежно определять глинистые минералы.

Способ определения глинистых минералов, включающий отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, отличающийся тем, что для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм.
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛИНИСТЫХ МИНЕРАЛОВ
Источник поступления информации: Роспатент

Показаны записи 31-38 из 38.
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
13.02.2018
№218.016.2133

Способ получения керамических изделий сложной объемной формы

Изобретение относится к технологии получения керамических изделий марок ВК-95 и ВК-94 и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах. Способ...
Тип: Изобретение
Номер охранного документа: 0002641683
Дата охранного документа: 19.01.2018
29.05.2018
№218.016.54ac

Способ изготовления керамической мембраны

Изобретение относится к технологии получения керамической мембраны на пористом носителе, в частности на подложках из оксида алюминия или оксида циркония. Способ изготовления керамической мембраны, включающий получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии...
Тип: Изобретение
Номер охранного документа: 0002654042
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.56d9

Устройство для определения натяжения шнура

Изобретение относится к измерительной технике и может быть использовано для измерения вантовых конструкций. Сущность изобретения сводится к тому, что предварительно натянутый шнур защемляют между двумя зажимами из материала с высоким коэффициентом трения, например резины. Используя систему...
Тип: Изобретение
Номер охранного документа: 0002655032
Дата охранного документа: 23.05.2018
29.03.2019
№219.016.ee14

Гидробаллистический стенд

Изобретение относится к технике высокоскоростного метания в лабораторных условиях. В гидробаллистическом стенде соосно и последовательно по траектории движения метаемой модели смонтирован вакуумируемый ствол баллистической установки, электромагнитный датчик дульной скорости, вакуумный глушитель...
Тип: Изобретение
Номер охранного документа: 0002683148
Дата охранного документа: 26.03.2019
27.03.2020
№220.018.1054

Способ аддитивного формования изделий из порошковых материалов

Изобретение относится к аддитивному формованию изделий из порошковых материалов. Способ включает экструзионную подачу смеси, содержащей порошок металлов или керамики и полимерное связующее, в зону построения изделия с одновременным локальным тепловым разогревом смеси и последующую...
Тип: Изобретение
Номер охранного документа: 0002717768
Дата охранного документа: 25.03.2020
03.06.2020
№220.018.235d

Способ получения пористого керамического материала с трехуровневой поровой структурой

Изобретение относится к технологии получения пористых керамических материалов и может быть использовано при изготовлении деталей, работающих в условиях трения, носителей катализаторов, фильтров, в медицине при изготовлении остеоимплантов. Способ получения пористого керамического материала с...
Тип: Изобретение
Номер охранного документа: 0002722480
Дата охранного документа: 01.06.2020
04.07.2020
№220.018.2efa

Гетеромодульный керамический композиционный материал и способ его получения

Изобретение относится к области получения высокопрочных, износостойких керамических материалов (композитов) на основе тугоплавких соединений и может быть использовано для изготовления деталей трибоузлов, в том числе работающих в условиях повышенных экстремальных температур. Технический...
Тип: Изобретение
Номер охранного документа: 0002725329
Дата охранного документа: 02.07.2020
Показаны записи 31-34 из 34.
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
13.02.2018
№218.016.2133

Способ получения керамических изделий сложной объемной формы

Изобретение относится к технологии получения керамических изделий марок ВК-95 и ВК-94 и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах. Способ...
Тип: Изобретение
Номер охранного документа: 0002641683
Дата охранного документа: 19.01.2018
01.03.2019
№219.016.d035

Способ разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений

Использование: для разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений. Сущность: заключается в том, что отбирают монофракции, возбуждают в них люминесценцию с помощью рентгеновской трубки, снимают спектр рентгенолюминесценции в спектральном диапазоне...
Тип: Изобретение
Номер охранного документа: 0002444724
Дата охранного документа: 10.03.2012
09.05.2019
№219.017.4f9e

Способ определения содержания серебра в йодидах

Изобретение относится к области диагностики йодидов из зон окисленных руд. Способ включает отбор монофракций, возбуждение в них люминесценции с последующим определением состава минерала. Люминесценцию возбуждают рентгеновскими лучами, снимают спектр рентгенолюминесценции в спектральном...
Тип: Изобретение
Номер охранного документа: 0002432555
Дата охранного документа: 27.10.2011
+ добавить свой РИД