×
27.06.2015
216.013.58fd

Результат интеллектуальной деятельности: ЧАСТОТНО-РЕЗОНАНСНЫЙ ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002554322
Дата охранного документа
27.06.2015
Аннотация: Изобретение относится к бесшкальным манометрам. Техническим результатом изобретения является повышение точности измерений. Датчик давления для считывания давления технологической текучей среды содержит корпус датчика, подвергаемый воздействию давления технологической текучей среды. Корпус датчика деформируется в ответ на давление. Диафрагма, подвешенная в корпусе датчика, имеет натяжение, которое изменяется в ответ на деформацию корпуса датчика. Резонансную частоту диафрагмы измеряют. Измеренная резонансная частота является показателем давления в магистрали технологической текучей среды и целостности системы разделительной заполняющей текучей среды. Кроме измерения резонансной частоты, в качестве средства диагностики для оценки состояния исправности датчика можно использовать саму моду колебаний. 3 н. и 17 з.п. ф-лы, 5 ил.

УРОВЕНЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к бесшкальным манометрам такого типа, которые применяются в системах управления технологическими процессами. В частности, настоящее изобретение относится к датчику давления для применения в бесшкальном манометре.

Бесшкальные манометры применяются в системах управления технологическими процессами для контроля давлений технологических текучих сред. Бесшкальный манометр содержит датчик давления, который связан с технологической текучей средой и обеспечивает выходной сигнал в ответ на давление, приложенное технологической текучей средой. Один общеизвестный тип бесшкального манометра представляет собой измерительный преобразователь модели 3051, выпускаемый компанией Rosemount Inc., Chanhassen, Minnesota. Бесшкальные манометры показаны также, например, в патенте США № 5,094,109.

Во многих установках, в которых измеряют дифференциальное давление, часто желательно также получать результаты измерения давления в магистрали (т.е. давление технологической текучей среды в трубе или канале). Например, давление в магистрали можно использовать для определения массового расхода технологической текучей среды или для других задач управления. Однако, когда измерение давления в магистрали требуется в дополнение к измерению дифференциального давления, то, обычно, требуется дополнительный датчик давления. Упомянутый дополнительный датчик давления нуждается в дополнительных компонентах и связи с технологической текучей средой. Упомянутые дополнительные компоненты приводят к усложнению и удорожанию, а также повышают вероятность отказа.

Кроме того, многие технологии восприятия давления обеспечивают связь с технологической текучей средой через разделительную схему, которая использует разделительную диафрагму, открытую воздействию технологической текучей среды, и разделительную заполняющую текучую среду, которая связывает датчик давления с разделительной диафрагмой. Данная разделительная схема может быть потенциальным источником погрешностей, усложнения и возможного отказа технологических устройств.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Датчик давления для восприятия давления технологической текучей среды содержит корпус датчика, подвергаемый воздействию давления технологической текучей среды. Корпус датчика деформируется в ответ на давление. Диафрагма, подвешенная в корпусе датчика, имеет натяжение, которое изменяется в ответ на деформацию корпуса датчика. Резонансную частоту диафрагмы измеряют. Измеренная резонансная частота является показателем давления технологической текучей среды в магистрали и целостности системы разделительной заполняющей текучей среды. В дополнение к измерению резонансной частоты можно использовать сам по себе режим генерации в качестве диагностического средства для оценки состояния исправности датчика.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - вид в разрезе датчика давления в соответствии с настоящим изобретением.

Фиг. 2 - вид в разрезе, представляющий датчик давления, показанный на фиг. 1, при приложении давления к обоим отверстиям для отбора давления датчика, показанного на фиг. 1.

Фиг. 3 - вид в разрезе датчика давления, содержащего источник акустического сигнала.

Фиг. 4 - вид в разрезе измерительного преобразователя технологического параметра, содержащего датчик давления в соответствии с настоящим изобретением.

Фиг. 5A-5F - примеры резонансных мод центральной диафрагмы в соответствии с изобретением.

ПОДРОБНОЕ ОПИСАНИЕ

Настоящее изобретение относится к датчикам давления такого типа, которые применяются в бесшкальных манометрах систем управления технологическими процессами. В соответствии с настоящим изобретением предлагается датчик давления, который содержит деформируемый корпус датчика. В корпусе датчика установлена диафрагма. Когда корпус деформируется, резонансная частота диафрагмы изменяется. Резонансную частоту можно измерять, и приложенное давление можно определять.

На фиг. 1 представлен вид в разрезе датчика 10 дифференциального давления в соответствии с одним вариантом осуществления настоящего изобретения. Датчик 10 давления выполнен в одной из примерных конфигураций датчиков дифференциального давления и содержит соединители 26 для передачи воздействия давления, которые продолжаются сквозь корпус 23 датчика. Корпус датчика сформирован из полусекций 46 и 48 и содержит металлостеклянный композит. Полость 25 внутри датчика 10 содержит заполняющую текучую среду. Подвижная диафрагма 16 продолжается поперек полости 25 и выполнена с возможностью перемещения в ответ на приложенное дифференциальное давление. В полости 25 датчика 10 расположены электроды (обкладки конденсатора) 20A и 20B. Электрические соединения 40, подсоединенные к электродам 20 и диафрагме 16, служат для измерения электроемкости между упомянутыми обкладками. Данная емкость изменяется по мере того, как диафрагма перемещается в ответ на приложенное давление, и может служить для определения приложенного дифференциального давления. Данное измерение дифференциального давления можно использовать для определения расхода в трубе или канале.

В соответствии с настоящим изобретением, резонансный акустический преобразователь 96 (показанный на фиг. 3) присоединен к деформируемому корпусу 23 датчика давления и выполнен с возможностью возбуждения резонанса диафрагмы 16, частота которого изменяется в ответ на давление в магистрали технологической текучей среды. Электроды 20A и 20B могут выполнять функцию датчика резонанса и подробно рассматриваются ниже.

Когда к корпусу 23 датчика прикладывается дифференциальное давление через соединения 26 для передачи воздействия давления, то, в дополнение к перемещению диафрагмы 16, общая форма корпуса 23 датчика также изменяется в ответ на давление в магистрали. Данная деформация формы корпуса датчика изменяет резонансную частоту диафрагмы 16. Резонансную частоту диафрагмы можно измерять в соответствии с любым подходящим методом. Например, для возбуждения резонанса диафрагмы 16 можно применить акустический преобразователь (источник). Тогда резонансную частоту диафрагмы можно передавать посредством измерения изменений емкости между электродами 20A и 20B и диафрагмой 16.

Нижеприведенное уравнение служит для прогнозирования резонансной частоты предварительно напряженной мембраны:

, (уравнение 1)

где

fn = собственная частота мембраны (Гц);

λij = постоянная величина, основанная на резонансной моде, основанной на узловых радиусах (i) и узловых диаметрах (j);

σ = натяжение центральной диафрагмы (фунтов/кв. дюйм);

ρ = свойство материала мембраны как функция массы, объема и силы тяжести (фунт-с2/дюйм4);

A = эффективная площадь резонирующей мембраны.

Уравнение 1 описывает соотношение, которое можно использовать для вычисления натяжения центральной диафрагмы посредством измерения частоты, на которой диафрагма резонирует. Упрощение уравнения 1 показывает, что:

, (уравнение 2)

которое указывает, что резонансная частота центральной диафрагмы пропорциональна квадратному корню из натяжения центральной диафрагмы 16.

На фиг. 2 приведен упрощенный вид в разрезе датчика 10, показывающий деформацию корпуса датчика 10 в ответ на приложение давления в магистрали с технологической текучей средой. В ответ на приложение давления глубина полости увеличивается, что вынуждает полусекции 46 и 48 сильно отклоняться внутрь. Данное отклонение приводит к ослаблению натяжения (напряжения) центральной диафрагмы 16. Как показано на фиг. 2, глубина (Z0) полости увеличивается (на ΔΖ) с увеличением давления в магистрали. Отклонение подчиняется закону Гука и прямо пропорционально давлению в магистрали, P, т.е.:

Z=Z0+kzP, (уравнение 3)

где kz означает константу пружины, являющуюся коэффициентом пропорциональности между давлением в магистрали и глубиной полости. Аналогично, радиус (r) датчика на центральной диафрагме (CD) уменьшается (на Δr) при приложении давления в магистрали. Данное отклонение линейно зависит от давления в магистрали (p):

r=r0-krP, (уравнение 4)

где kr означает константу пружины, являющуюся коэффициентом пропорциональности между давлением в магистрали и изменением радиуса. Вследствие этого напряжение CD (центральной диафрагмы) также линейно зависит от давления в магистрали:

σ=σ0-kσP, (уравнение 5)

где kσ означает константу пружины, являющуюся коэффициентом пропорциональности между давлением в магистрали и напряжением центральной диафрагмы. Так как напряжение CD (центральной диафрагмы) является двухосным, то деформацию можно преобразовать в напряжение следующим образом:

, (уравнение 6)

где ε = деформация = , E = модуль Юнга и ν = коэффициент поперечного сжатия для CD (центральной диафрагмы). Вследствие данной прямой пропорциональности можно записать:

. (уравнение 7)

Индуцированный резонанс является гармоническим явлением, при котором пассивное тело реагирует на такие внешние колебания, которым данное тело гармонически подобно. При использовании индуцированного резонанса энергия может передаваться и сохраняться между резонансными системами. В соответствии с настоящим изобретением, центральная диафрагма 16 корпуса датчика приводится в состояние индуцированного резонанса, например, источником акустического сигнала. Центральную диафрагму приводят в резонанс акустически или механически и резонансную частоту измеряют для определения давления в магистрали. Резонансную частоту можно также использовать для диагностики целостности центральной диафрагмы, а также разделяющих диафрагм и соединителей для передачи воздействия давления, которые наполнены маслом и служат для изолирования датчика от технологической текучей среды.

Центральная диафрагма будет резонировать на характерной частоте, основанной на натяжении диафрагмы. Факторы, влияющие на натяжение центральной диафрагмы, содержат давление в магистрали, дифференциальное давление и температуру. Так как дифференциальное давление и температуру измеряют в устройстве, то их вклад в изменения натяжения диафрагмы можно охарактеризовать и, следовательно, их влияния можно корректировать. При этом только давление в магистрали остается неизвестным, и значение его вклада в частоту можно вычислить из уравнения 8:

f LP =f measured -f DP ±f temperature. (уравнение 8)

Дифференциальное давление будет увеличивать натяжение (и повышать резонансную частоту), так как центральная диафрагма смещается со своей нейтральной оси. Температура датчика будет либо увеличивать, либо уменьшать натяжение на центральной диафрагме по мере того, как материал расширяется или сжимается.

Для практического датчика на основе резонансной диафрагмы большое значение имеет проблема демпфирования среды. Когда диафрагма окружена жидкостью, например разделяющим маслом в типичном случае применения, резонансное поведение диафрагмы будет сильно демпфироваться. Данное демпфирование происходит потому, что масло, например, должно смещаться физически, чтобы диафрагма колебалась. Данную проблему можно смягчить несколькими средствами: одним средством является применение датчика в газовой среде, которая будет слабее влиять на демпфирование диафрагмы. Однако, в некоторых случаях применения, данное решение невыполнимо, и жидкость, обычно масло, должна быть в контакте с диафрагмой.

Чтобы обойти приведенную проблему, можно применить второй способ. Резонансные моды диафрагмы высшего порядка, обычно, характеризуются большим числом волнообразных движений в растянутой мембране диафрагмы и, как правило, характеризуются меньшими амплитудами смещения. Данная особенность уменьшает суммарное смещение объема, и, следовательно, демпфирование моды, показанной на фиг. 5C, будет менее сильным, чем демпфирование, происходящее для моды, показанной на фиг. 5A.

Еще более эффективный третий способ предназначен только для возбуждения так называемых «азимутально-асимметричных» мод, показанных на фиг. 5D-F. Данные конкретные моды имеют преимущество в отсутствии смещения любого полезного объема, так как направленным вверх смещениям противостоят равные, направленные вниз смещения.

Следовательно, для минимального демпфирования резонанса, когда диафрагма находится в контакте с жидкостью, следует рассматривать азимутально-асимметричные моды самого высокого порядка.

В качестве диагностического средства конкретная мода, которую возбуждают, может также изменяться, если изменилось какое-то свойство датчика, и, следовательно, при обнаружении будет указывать на потенциальную неисправность датчика.

На фиг. 3 представлен вид в разрезе ячейки датчика 10 давления. На фиг. 3 электроды 20 изображены как центральные электроды 20A и кольцевые электроды 20B. Данные электроды связаны с электрическими соединениями 40. Акустический преобразователь 96 изображен установленным в одной из полусекций 46 и служит для подведения акустического сигнала к центральной диафрагме 16. Акустический преобразователь 96 соединен с проводами 98 и возбуждается на некоторой частоте или с разверткой в диапазоне частот, чтобы возбуждать резонанс центральной диафрагмы. Данный резонанс может обнаруживаться измерением изменений емкости между электродами 20A/B и центральной диафрагмой 16. Хотя в данном примере показано, что для определения отклонения центральной диафрагмы 16 из-за резонанса используют емкость, можно также применять другие методы. Другие методы содержат акустические, оптические, механические или другие методы восприятия.

На фиг. 4 представлен вид в разрезе измерительного преобразователя 100, содержащего датчик 102 давления в соответствии с вариантом осуществления настоящего изобретения, с акустическим преобразователем 96. В промышленности известно, что измерительный преобразователь 100 содержит платформу Coplanar™ и разделительные диафрагмы 106 и 108 выставлены, как правило, в одной плоскости. Фланец 111 соединяется с измерительным преобразователем 100 болтами 110, чтобы, тем самым, подводить давления P1 и P2 к разделительным диафрагмам 106 и 108. Прокладки 109 обеспечивают уплотнение между фланцем 111 и разделительными диафрагмами 106, 108. В соединителях 120 для передачи воздействия давления, которые подсоединены к датчику 102 давления, содержится, по существу, несжимаемая текучая среда. Аналогично датчику 10 давления, датчик 102 имеет корпус датчика, который сформирован из двух полусекций 112, 114, наполненных, соответственно, стеклянным материалом 116, 118. Электрические проводники 124 соединены с обкладками (не показанными) конденсатора, которые содержатся на поверхностях датчика, выполненных из хрупких материалов 116, 118. Диафрагма 122 отклоняется в ответ на приложенные давления P1 и P2 и вызывает, тем самым, изменение емкости, которое обнаруживается схемами 123 измерительного преобразователя, который обеспечивает выходной сигнал, зависящий от давлений P1 и P2, через контур управления технологическим процессом. Контуры управления технологическими процессами могут соответствовать любому подходящему стандарту, содержащему двухпроводной контур управления технологическим процессом, например 4-20-мА токовые контуры, контуры управления на основе HART® или FieldBus, беспроводной контур и т.п. Кроме того, контур управления технологическим процессом может содержать беспроводной контур управления, в котором для передачи данных используют методы беспроводной связи.

В дополнение к определению давления в магистрали на основе резонанса центральной диафрагмы, как поясняется выше, можно также использовать резонансную частоту и тип моды, чтобы определять состояние центральной диафрагмы, а также систему масляного наполнения. Схемы 123 измерительного преобразователя обеспечивают диагностические схемы и соединяются с акустическим преобразователем 96 проводами 98. Схемы 123 выполнены с возможностью подачи питания в преобразователь 96 и, в ответ, восприятия резонансной частоты диафрагмы 122, как пояснялось выше. Схемы 123 могут обеспечивать диагностический выходной сигнал, например, на выходе измерительного преобразователя. Повреждение центральной диафрагмы или возникновение утечек масла приведет к изменениям резонансной частоты центральной диафрагмы. Хотя пояснение измерения резонанса основано на примере изменений емкости, возможно применение других методов измерения, например применение акустических, оптических, механических или других методов восприятия. Измеренную резонансную частоту можно корректировать на основе измеренных дифференциального давления и температуры при желании повышения точности измерений. Если требуется температурная коррекция, то можно обеспечить температурный датчик 130, имеющий тепловую связь с датчиком 102 давления, как показано на фиг. 4. Температурный датчик 130 может быть выполнен в соответствии с любой подходящей технологией датчиков и связан со схемами 123. Сдвиги резонансной частоты центральной диафрагмы 122 могут служить показателем физического повреждения, такого как, например, отверстие, прокол или разрыв диафрагмы или другое повреждение диафрагмы или компонентов измерительного преобразователя. Снижение давления масла с по меньшей мере одной стороны диафрагмы также будет вызывать изменение резонансной частоты. В одной конфигурации, измерения дифференциального давления можно также выполнять с использованием предварительно напряженной диафрагмы, акустического преобразователя (источника) и акустического датчика. Измерение резонанса разделительной диафрагмы может служить для определения целостности разделительной диафрагмы и указывает давление в магистрали. Резонанс диафрагмы можно также вызывать с использованием электростатических методов. В другом примере, источник энергии, используемый для ввода в резонанс центральной диафрагмы, расположен в месте, внешнем относительно измерительного преобразователя. Например, испытательное устройство может быть выполнено с возможностью связи с измерительным преобразователем и передачи акустической энергии в измерительный преобразователь и, тем самым, возбуждения резонанса диафрагмы.

В вышеприведенном описании предложен корпус датчика, выполненный из металлостеклянных композитов, однако возможно использование других материалов, которые имеют требуемые характеристики. Примеры содержат пластики и т.п. Для восприятия резонанса можно применить любую подходящую технологию, например методы на основе емкостных, тензометрических, оптических, кремниевых и т.п. датчиков. Кроме того, для безопасности, избыточности, самоконтроля и т.п. можно применить несколько датчиков. В контексте настоящей заявки, «частотно-резонансный датчик» может содержать любую подходящую технологию датчиков, применяемую для измерения или восприятия резонансной частоты центральной диафрагмы. На чертежах, приведенных в настоящей заявке, частотно-резонансный датчик показан в виде источника акустического сигнала и отдельного датчика смещения, который измеряет смещение центральной диафрагмы на основе электрической емкости. Однако настоящее изобретение не ограничено данным конкретным частотно-резонансным датчиком.


ЧАСТОТНО-РЕЗОНАНСНЫЙ ДАТЧИК ДАВЛЕНИЯ
ЧАСТОТНО-РЕЗОНАНСНЫЙ ДАТЧИК ДАВЛЕНИЯ
ЧАСТОТНО-РЕЗОНАНСНЫЙ ДАТЧИК ДАВЛЕНИЯ
ЧАСТОТНО-РЕЗОНАНСНЫЙ ДАТЧИК ДАВЛЕНИЯ
ЧАСТОТНО-РЕЗОНАНСНЫЙ ДАТЧИК ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
25.08.2017
№217.015.b3a7

Гаситель колебаний для корпуса датчика

Изобретение относится к технологиям, в которых используются текучие среды, и датчикам, использующимся для измерения переменных величин процесса, таких как давление, температура, уровень и расход. Сенсорный зонд содержит трубку, чувствительный элемент и поглощающую массу. Трубка предназначена...
Тип: Изобретение
Номер охранного документа: 0002613626
Дата охранного документа: 21.03.2017
13.02.2018
№218.016.25c2

Обнаружение положения плунжера в скважине

Группа изобретений относится к системе и способу обнаружения момента достижения плунжером забоя скважины. Система включает датчик давления, выполненный с возможностью измерения давления в скважине и представления измеренного давления на выходе; электронную схему вычисления производных,...
Тип: Изобретение
Номер охранного документа: 0002644184
Дата охранного документа: 08.02.2018
17.02.2018
№218.016.2aed

Диагностика промышленных процессов c помощью измерений температуры инфракрасного излучения

Группа изобретений относится к диагностике систем управления и контроля в промышленных процессах. Способ проведения диагностики с помощью полевого устройства и идентификации в ответ на это диагностируемого состояния в промышленном процессе, содержит этапы, на которых: измеряют инфракрасные...
Тип: Изобретение
Номер охранного документа: 0002642931
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2c44

Технологическое устройство с измерением технологических параметров с использованием устройства захвата изображения

Изобретение относится к управлению технологическим процессом. Полевое устройство для мониторинга технологического параметра текучей среды промышленного процесса содержит технологический компонент, который представляет относительное движение в зависимости от технологического параметра,...
Тип: Изобретение
Номер охранного документа: 0002643304
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2e0b

Модифицированная текучей ферросредой заполняющая текучая среда для преобразователей давления

Изобретение относится к технологическим инструментам, используемым в промышленных системах управления процессом. Заявленный преобразователь давления для измерения давления технологической текучей среды содержит корпус преобразователя, датчик давления для измерения давления технологической...
Тип: Изобретение
Номер охранного документа: 0002643676
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.3509

Измерительный преобразователь технологической переменной с датчиком технологической переменной, несомым технологической прокладкой

Измерительный преобразователь (260) технологической переменной для восприятия технологической переменной технологической текучей среды в промышленном процессе включает в себя технологическую прокладку (200), имеющую поверхность, выполненную с возможностью образования уплотнения с поверхностью...
Тип: Изобретение
Номер охранного документа: 0002645882
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.416d

Передающий датчик давления технологической текучей среды с отдельным датчиком и электроникой датчика

Передающий датчик давления технологической текучей среды имеет удаленный датчик (204) давления. Передающий датчик включает в себя корпус (104) под электронику и коммуникатор (300) контура, расположенный в корпусе (104) под электронику и конфигурируемый, чтобы передавать данные в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002649032
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.417e

Коррозионностойкий модуль давления для измерительного преобразователя давления технологической текучей среды

Предоставляется модуль датчика давления для технологического измерительного преобразователя давления. Модуль датчика давления включает в себя первый элемент, сформированный из металла, подходящего для воздействия морской воды. Первый элемент имеет канал, проходящий через него. Изолирующая...
Тип: Изобретение
Номер охранного документа: 0002649042
Дата охранного документа: 29.03.2018
Показаны записи 11-20 из 65.
10.01.2015
№216.013.1b17

Датчик дифференциального давления с измерением давления в линии

Изобретение относится к датчикам давления, используемым для измерения технологической текучей среды и дифференциального давления. Техническим результатом изобретения является повышение точности измерений давления. Сборный узел датчика давления для измерения давления технологической текучей...
Тип: Изобретение
Номер охранного документа: 0002538363
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.2fbd

Измерение температуры технологической текучей среды

Изобретение относится к системам управления и контроля производственных процессов и может быть использовано для измерения температуры технологической текучей среды. Устройство (12) для измерения температуры технологической текучей среды включает в себя основанный на сопротивлении датчик 32...
Тип: Изобретение
Номер охранного документа: 0002543689
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fc9

Самоустанавливающийся датчик/передатчик для оснащения процесса

Заявленная группа изобретений относится измерительной технике и предназначена для контроля технологических процессов. Сборка датчика для использования с передатчиком процесса содержит аналоговый чувствительный элемент, соединительные провода датчика для подсоединения аналогового...
Тип: Изобретение
Номер охранного документа: 0002543701
Дата охранного документа: 10.03.2015
27.06.2015
№216.013.5858

Узел акустического преобразователя для сосуда под давлением

Изобретение относится к контролю сосудов под давлением. Узел преобразователя, предназначенный для диагностики акустического шума от сосуда под давлением, содержит элемент акустического датчика, акустический волновод, который содержит поворотный акустический соединитель, соединенный с элементом...
Тип: Изобретение
Номер охранного документа: 0002554157
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.612e

Беспроводной адаптер для диагностики процесса

Изобретение относится к системам контроля или управления промышленными процессами, в которых полевые устройства используются для контроля и управления промышленным процессом. Технический результат заключается в повышении надежности и сокращении времени простоя оборудования. Технологическое...
Тип: Изобретение
Номер охранного документа: 0002556420
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6276

Беспроводной измерительный передатчик со сменным модулем

Изобретение относится к беспроводным измерительным передатчикам. Передатчик (100) включает в себя основное тело (102B) корпуса с первой полостью (104), закрытой первой крышкой (102А), и второй полостью (106), закрытой второй крышкой (102С). Узел измерительной схемы, находящийся в первой полости...
Тип: Изобретение
Номер охранного документа: 0002556753
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.63b9

Модульный искробезопасный блок питания полевого устройства

Изобретение относится к области систем управления технологическими процессами. Сборка (12) модульного искробезопасного блока питания включает в себя жесткий адаптер (22) для кабелепровода, сконфигурированный для установки на кабелепровод полевого устройства (10). Корпус (66), имеющий...
Тип: Изобретение
Номер охранного документа: 0002557076
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6bcf

Пламегаситель для производственного датчика

Настоящее изобретение относится главным образом к датчикам для промышленного производства, используемым в системах управления промышленным производством. В частности, настоящее изобретение относится к пламегасителям для датчиков для промышленного производства. Заявленная группа изобретений...
Тип: Изобретение
Номер охранного документа: 0002559157
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.86b6

Динамическое управление питанием для двухпроводной контрольно-измерительной аппаратуры

Контрольно-измерительная аппаратура включает измерительный преобразователь (12), двухпроводной интерфейс (34a, 34b), микропроцессор (20), цифроаналоговый преобразователь (22), первую цепь управления (23a, 23b, 23c, 23d, 23e, 24, 26, 28, 30, 32) и вторую цепь управления (38). Ток (I), проходящий...
Тип: Изобретение
Номер охранного документа: 0002566089
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ce

Модульный преобразователь температуры с двумя отделениями

Изобретение относится к измерительной технике и может быть использовано для определения температуры среды в различных областях техники. Преобразователь (100) температуры включает корпус (112) с двумя отделениями и электронный модуль (120) преобразователя температуры с установкой на головке....
Тип: Изобретение
Номер охранного документа: 0002566369
Дата охранного документа: 27.10.2015
+ добавить свой РИД