×
27.06.2015
216.013.58bc

Результат интеллектуальной деятельности: ФОРСУНКА ДЛЯ РАСПЫЛЕНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического материала, поляризованного в радиальном направлении, а защитный стальной чехол электрически изолирован от корпуса форсунки. К стальному чехлу и корпусу форсунки подключен источник переменного электрического напряжения с заданной частотой. Обеспечивается повышение массовой доли высокодисперсной фракции в пульверизате и повышение надежности работы форсунки. 1 ил., 1 пр.
Основные результаты: Форсунка для распыления расплавленного металла, содержащая корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, отличающаяся тем, что ниппель выполнен из термостойкого пьезоэлектрического материала, поляризованного в радиальном направлении, а защитный стальной чехол электрически изолирован от корпуса форсунки, при этом стальной чехол и корпус форсунки подключены к источнику переменного электрического напряжения, частота колебаний которого определена из уравнения: ,где f - частота колебаний, Гц;u - скорость движения пленки расплава, м/с;δ - толщина пленки расплава, м;σ - коэффициент поверхностного натяжения расплава, Н/м;ρ - плотность расплава, кг/м;µ - коэффициент динамической вязкости расплава, Па·с.

Изобретение относится к области порошковой металлургии, в частности к устройствам для получения порошков алюминия, магния и их сплавов распылением расплавленных металлов газовым потоком.

Известны способы и устройства для получения металлических порошков распылением пленки расплава внешним кольцевым потоком сжатого газа [1].

Известны форсунки, в выходной части ниппеля которых для повышения дисперсности получаемого порошка (пульверизата) выполнены сквозные каналы [2] или щелевидные пазы [3] для дополнительного ввода сжатого газа в зону распыления пленки расплава. Поступающие через каналы или щелевидные пазы струи газа внедряются в пленку расплава и создают в ней возмущения, способствующие образованию мелкодисперсных капель в факеле распыла.

Известна форсунка для распыления расплавов металлов, в которой для повышения дисперсности получаемых порошков на движущуюся пленку жидкого металла накладываются возмущающие ее звуковые колебания, генерируемые спрофилированными определенным образом каналами для подачи распыляющего газа [4].

Наиболее близкой по техническому решению к заявляемому изобретению является форсунка для распыления расплава сжатым газом, содержащая корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол [5]. На корпус форсунки установлен ултразвуковой излучатель аппарата модели УЗТА-1/22-O, что позволило для частоты колебаний (15÷25) кГц увеличить выход фракции с размером частиц до 5 мкм с 8.65% до 12.62%, а частиц с размером до 10 мкм с 24.1% до 33.3% при распылении расплава алюминия сжатым газом. Недостатком данной форсунки является сложная конструкция крепления излучателя на корпусе форсунки и низкая эффективность использования ултразвуковых колебаний из-за опосредованной их передачи к расплаву металла через корпус форсунки, необходимость охлаждения излучателя в процессе работы.

Техническим результатом настоящего изобретения является повышение массовой доли высокодисперсной фракции в пульверизате и повышение надежности работы форсунки.

Технический результат достигается тем, что разработана форсунка для распыления расплавленных металлов, включающая корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол. Ниппель выполнен из термостойкого пьезоэлектрического материала, поляризованного в радиальном направлении, а защитный стальной чехол электрически изолирован от корпуса форсунки. К стальному чехлу и корпусу форсунки подключен источник переменного электрического напряжения, частота которого определяется уравнением

,

где f - частота колебаний, Гц;

u - скорость движения пленки расплава, м/с;

δ - толщина пленки расплава, м;

σ - коэффициент поверхностного натяжения расплава, Н/м;

ρ - плотность расплава, кг/м3;

µ - коэффициент динамической вязкости расплава, Па·с.

Полученный положительный эффект изобретения связан со следующими факторами.

1. Под действием переменного электрического напряжения между стальным защитным чехлом и расплавом в ниппеле, выполненном из пьзоэлектрического материала, возникают радиальные механические колебания, которые непосредственно воздействуют на пленку расплава, движущуюся по каналу к выходному конусу ниппеля. Эти колебания, амплитуда которых может составлять до 10 мкм [5], вносят возмущения в пленку жидкости и повышают эффективность ее дробления газовой струей.

Таким образом, внутренняя поверхность канала ниппеля будет находиться в колебательном движении в соответствии с изменением знака подаваемого напряжения. Частота этих колебаний может изменяться в широких пределах, от единиц герц до нескольких мегагерц, что позволяет подобрать такое ее значение, которое будет оказывать наибольшее влияние на процесс диспергирования пленки расплава.

2. Механические колебания внутреннего канала ниппеля препятствуют прилипанию к стенкам канала металла и шлаковых отложений, что уменьшает величину коэффициента трения и повышает надежность работы форсунки (предотвращает зашлаковывание канала).

3. Пьезокерамические материалы сохраняют работоспособность в широком диапазоне температур (например, пьезокерамика ТНВ-2 имеет рабочую температуру до 900°C при температуре точки Кюри 950°C [6]), что позволяет использовать ниппели, изготовленные из пьзокерамики ТНВ-2, для получения порошков из расплавов металлов и сплавов с температурой плавления до 900°C.

4. Частота колебаний электрического напряжения, создающего механические колебания ниппеля, определяется уравнением

где u - скорость движения пленки расплава в диффузорной части ниппеля;

δ - средняя толщина пленки расплава;

µ, ρ, σ - коэффициент динамической вязкости, плотность и коэффициент поверхностного натяжения расплава.

Рассчитанное по уравнению (1) значение частоты колебаний обеспечивает максимальное возмущающее воздействие на пленку расплава, поскольку оно совпадает со значением частоты максимального инкремента колебаний свободной поверхности пленки расплава (эффект резонанса).

Анализ задачи о распаде струи жидкости под действием капиллярных сил показал [7], что инкремент колебаний поверхности жидкости имеет максимум при значении волнового числа k=2π/λ, где λ длина волны, равном

Из уравнения (2) следует выражение для длины волны колебаний:

Подставляя в (3) связь длины волны с частотой колебаний

,

получим уравнение (1) для частоты колебаний, обеспечивающей наилучшие условия распада пленки жидкости.

При значении волнового числа k=kmax, определяемого уравнением (2), достигается максимальное значение инкремента колебаний:

.

За время, равное , амплитуда колебаний А увеличивается в е раз, поскольку A~ехр(αt).

Пример реализации изобретения

На фиг.1 показан пример выполнения предлагаемой форсунки. Форсунка для распыления металлического расплава газом состоит из корпуса 1, ниппеля 2 с центральным каналом для подачи расплава, защитного стального чехла 3, крышки 4, трубопровода 5 для подачи расплава и канала 6 для подачи горячего сжатого газа. Защитный стальной чехол 3 изолирован от корпуса форсунки 1 керамическими изоляторами 7 и 8 и к нему прикреплен один из электродов от источника переменного электрического напряжения, например, от импульсного генератора. Второй электрод подсоединен к корпусу форсунки и, следовательно, к трубопроводу 5 для подачи расплава. Ниппель 2 форсунки изготовлен из пьезоэлектрического материала, например, из пьезокерамики ТНВ-2 [6], поляризованного в радиальном направлении.

Форсунка работает следующим образом. Через канал 6 в корпус форсунки 1 подают сжатый газ (воздух или азот с контролируемым содержанием кислорода) под давлением от одной до нескольких десятков атмосфер. Истечение газа из кольцевого сопла в крышке 4 создает разрежение (вакуум) в выходном конусе ниппеля 2, вызывая принудительное поступление расплавленного металла по трубопроводу 5 в центральный канал ниппеля 2. Под действием переменного электрического напряжения, приложенного к электродам 9, между пленкой расплава, движущейся по центральному каналу ниппеля 2, и стальным защитным чехлом 3 создается переменное электрическое поле, которое вызывает радиальные механические колебания в пьезоэлектрическом материале ниппеля 2. Эти механические колебания действуют на пленку расплава, движущуюся по центральному каналу ниппеля 2, снижая ее устойчивость и повышая эффективность ее последующего дробления газом. Механические колебания поверхности центрального канала ниппеля 2 препятствуют налипанию на его поверхность металла и шлака, что предотвращает зашлаковывание канала и повышает надежность работы форсунки и ее производительность. Изменение величины амплитуды импульсов электрического напряжения, подаваемых на электроды 9, а также частоты их следования, позволяет изменять амплитуду и частоту механических колебаний в ниппеле и тем самым регулировать процесс диспергирования расплава.

Для форсунки (фиг.1) при распылении расплава алюминия при температуре 900°C (ρ=2360 кг/м3, µ=0.0014 Па·с, σ=0.84 Н/м) и толщине пленки δ=0.5 мм, движущейся со скоростью u=5 м/с, оптимальное значение частоты колебаний, рассчитанное по формуле (1), составляет f=1.1 кГц.

Таким образом, предложенная форсунка позволяет повысить массовую долю высокодисперсной фракции в пульверизате за счет дополнительного воздействия механических колебаний на пленку расплава.

Источники информации

1. Федорченко И.М., Андриевский Р.А. Основы порошковой металлургии. - Киев: Изд-во АН УССР, 1963. - 420 с.

2. Пат. РФ 2296648, МПК B22F 9/08. Форсунка для распыления расплавленных металлов/ А.В. Кукса, А.В. Мольков, А.В. Губанов. - заявл. 19.10.2005; опубл. 10.04.2007.

3. Пат. РФ 2321475, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов, С.В. Линьков. - заявл.02.05.2006; опубл. 10.04.2008.

4. Patent US №4640806, МПК B22F 9/08. Process for atomizing liquid metals to produce finely granular powder /Thomas Duerig, Marcel Escudier, Jakob Keller, Killwangen. - заявл. 01.10.1985; опубл. 03.02.1987.

5. Хмелев B.H., Цыганок С.Н., Змановский С.В., Хмелев С.С. Ультразвуковой аппарат для повышения эффекта распыления жидких металлов. - Электронный журнал «Техническая акустика», , 2012, 1.

6. Каталог продукции НКТБ «Пьзоприбор», http://piezopribor.com/catalog?sid=92:Пьeзoкepaмичecкиe-мaтepиaлы.

7. Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1950. - 699 с.

Форсунка для распыления расплавленного металла, содержащая корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, отличающаяся тем, что ниппель выполнен из термостойкого пьезоэлектрического материала, поляризованного в радиальном направлении, а защитный стальной чехол электрически изолирован от корпуса форсунки, при этом стальной чехол и корпус форсунки подключены к источнику переменного электрического напряжения, частота колебаний которого определена из уравнения: ,где f - частота колебаний, Гц;u - скорость движения пленки расплава, м/с;δ - толщина пленки расплава, м;σ - коэффициент поверхностного натяжения расплава, Н/м;ρ - плотность расплава, кг/м;µ - коэффициент динамической вязкости расплава, Па·с.
ФОРСУНКА ДЛЯ РАСПЫЛЕНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ
ФОРСУНКА ДЛЯ РАСПЫЛЕНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Показаны записи 51-51 из 51.
06.12.2019
№219.017.ea22

Способ идентификации космических аппаратов и их обломков в космическом пространстве

Изобретение относится к ракетно-космической технике и может быть использовано для идентификации космических аппаратов и их обломков в космическом пространстве с помощью средств космического мониторинга. Способ идентификации космических аппаратов и их обломков в космическом пространстве с...
Тип: Изобретение
Номер охранного документа: 0002707982
Дата охранного документа: 03.12.2019
Показаны записи 61-70 из 95.
02.02.2019
№219.016.b662

Способ защиты космического аппарата от столкновения с активно сближающимся объектом

Изобретение относится к космической технике и может использоваться для защиты космического аппарата с активно сближающимся объектом. Защита космического аппарата от столкновения с активно сближающимся объектом осуществляется по регистрации непрерывной последовательности сигналов с нарастающей...
Тип: Изобретение
Номер охранного документа: 0002678759
Дата охранного документа: 31.01.2019
21.02.2019
№219.016.c559

Устройство для защиты космического аппарата от высокоскоростного ударного воздействия частиц космического мусора

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ). Устройство для защиты КА от высокоскоростного ударного воздействия частиц КМ...
Тип: Изобретение
Номер охранного документа: 0002680359
Дата охранного документа: 19.02.2019
01.03.2019
№219.016.d0cf

Способ измерения интегрального коэффициента излучения поверхности теплозащитных материалов

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. Согласно заявленному способу в предварительно нагретый цилиндрический образец теплозащитного материала, размещенного в вакуумированной камере, устанавливается...
Тип: Изобретение
Номер охранного документа: 0002468360
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
03.04.2019
№219.016.fac7

Способ управления движением сложной формации группы космических аппаратов

Изобретение относится к управлению движением вращающейся связки космических аппаратов (КА). Способ включает переориентацию в пространстве маршевой двигательной установки (МДУ), расположенной в центре вращения связки и связанной тросами с КА. Концы тросов закрепляют на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002683700
Дата охранного документа: 01.04.2019
06.04.2019
№219.016.fda1

Способ стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке

Изобретение относится к управлению движением космических аппаратов. В способе стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного...
Тип: Изобретение
Номер охранного документа: 0002684022
Дата охранного документа: 03.04.2019
19.04.2019
№219.017.30f3

Способ получения металлизированного твердого топлива

Изобретение относится к области разработки металлизированных смесевых твердых топлив. Способ включает механическое перемешивание окислителя, горючего-связующего и металлического горючего. В качестве окислителя используют перхлорат аммония с размером частиц не более 50 мкм или нитрат аммония с...
Тип: Изобретение
Номер охранного документа: 0002415906
Дата охранного документа: 10.04.2011
23.04.2019
№219.017.36b3

Бронебойный активно-реактивный снаряд

Изобретение относится к боеприпасам, а именно к бронебойным активно-реактивным снарядам - БАРС. Технический результат - повышение эффективности бронепробиваемости при одновременном повышении точности стрельбы. Устройство содержит боевой элемент, включающий сердечник и корпус, гиперзвуковой...
Тип: Изобретение
Номер охранного документа: 0002685610
Дата охранного документа: 22.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
31.05.2019
№219.017.706d

Способ получения керамических изделий на основе порошков оксидов металлов

Изобретение относится к получению керамических деталей аддитивным нанесением слоев затвердевающей термопластичной суспензии. Используют термопластичную суспензию, содержащую порошок на основе системы диоксид циркония - диоксид иттрия (ZrO - YO) и парафин, и/или церезин, и/или воск с добавками...
Тип: Изобретение
Номер охранного документа: 0002689833
Дата охранного документа: 29.05.2019
+ добавить свой РИД