×
20.06.2015
216.013.56c1

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ ПРОСТРАНСТВЕННОЙ ПРОТЯЖЕННОСТИ ФАЗЫ МИНЕРАЛА ЦЕННОГО МАТЕРИАЛА В ПОРОДЕ

Вид РИД

Изобретение

№ охранного документа
0002553739
Дата охранного документа
20.06.2015
Аннотация: Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал. Способ характеризуется следующими этапами: выполнение процесса бурения посредством буровой установки в породе, при этом создается буровая мелочь, образование аэрозоля, включающего в себя буровую мелочь и газовый поток, перенос аэрозоля от буровой установки к по меньшей мере одному воздушному сепаратору, выполнение классификации в потоке, причем образуются по меньшей мере две фракции, включающие в себя частицы соответствующей равнопадаемости буровой мелочи, и определение свойства по меньшей мере одной из фракций, которая применяется как мера для локальной величины зерна минерала для минерала ценного материала в породе. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и причем минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал.

Под понятием «величина зерна минерала» для минерала ценного материала при этом понимается не величина зерна кристаллитов этого минерала, а локальная пространственная протяженность фазы минерала ценного материала в породе.

Величина зерна минерала и распределение минералов в породе до настоящего времени определяются с высокими временными затратами за счет того, что в месторождении или залежах на различных местах берутся и анализируются пробы породы. Для этого собираются обломки породы величиной примерно с кулак и/или выполняются разведочные бурения в грубом растре, чтобы получить буровой керн для анализа. Эти пробы породы анализируются в лаборатории в отношении их минералогического и химического состава. В то время как химический анализ по существу определяет тип и объем содержащихся элементов, минералогический анализ определяет тип и объем содержащихся минералов, а также их пространственное расположение. Для определения пространственного расположения минералов пробы породы шлифуются в направлении определенных пространственных осей. За счет оптического анализа полученных микрошлифов или аншлифов (полированных шлифов), например, под микроскопом можно узнать пространственное расположение и распределение минералов в породе. При пространственно широко распределенном расположении минералов имеют место меньшие величины зерна минералов, в то время как группирования минералов в определенных местах имеют место в случае больших величин зерна минералов.

В отношении структуры месторождения или залежи или пространственного распределения величин зерна минерала ценного материала в месторождении или залежи таким способом может быть предоставлено лишь немного информации, и то со значительной временной задержкой.

Моделирование месторождения, то есть создание модели месторождения или залежи, включая трехмерную регистрацию слоев пород или формаций пород с различными величинами зерна минерала ценного материала, едва ли возможно, ввиду незначительного располагаемого количества информации. Поэтому ориентированные на локально имеющуюся породу, то есть содержание минералов ценных материалов и их величину зерна минерала, выемка и селективная оценка возможны лишь в ограниченной степени.

В зависимости от величины зерен минералов, требуются различные степени размельчения породы, чтобы раскрывать минерал ценного материала и иметь возможность эффективно отделять его из всего добытого потока материала. Так, порода с минералами ценного материала с большой величиной зерна минерала для раскрытия минерала ценного материала должна размельчаться в меньшей степени, чем порода с минералами ценного материала с меньшей величиной зерна минерала.

До настоящего времени добытая порода размельчалась до средней величины зерна минерала, при этом первая часть породы, которая включает в себя минерал ценного материала с высокой величиной зерна минерала, размельчается излишне сильно, а вторая часть породы, которая включает в себя минерал ценного материала с меньшей величиной зерна минерала, размельчается в недостаточной степени. Излишне сильное измельчение первой части породы приводит к излишне высокому потреблению энергии для процесса размельчения. Напротив, недостаточное размельчение второй части породы приводит к недостаточному раскрытию и вследствие этого к недостаточной отделяемости минерала ценного материала и тем самым к неэффективной эксплуатации месторождения.

В WO 2010/000055 A1 описан способ и устройство для, в частности, непрерывного локального анализа буровой мелочи из бурового шлама. Отбирается проба буровой мелочи, которая является репрезентативной для пробуренной формации породы, и анализируется в отношении типа породы и химического состава. При необходимости параметры бурения, включая глубину бурения, эмиссии гамма-лучей и/или другие параметры, протоколируются, и выполняется их корреляция с результатами анализа пробы.

Задачей изобретения является создание способа и устройства, с помощью которых обеспечивается возможность определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи быстро и с высоким разрешением.

Задача решается способом для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой материал, причем минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал, при этом способ содержит следующие этапы:

выполнение процесса бурения посредством буровой установки в породе, при этом создается буровая мелочь,

образование аэрозоля, включающего в себя буровую мелочь и газовый поток,

перенос аэрозоля от буровой установки к по меньшей мере одному воздушному сепаратору,

выполнение классификации в потоке, причем образуются по меньшей мере две фракции, включающие в себя частицы соответствующей равнопадаемости буровой мелочи, и

определение свойства по меньшей мере одной из фракций, которое применяется как мера для локальной величины зерна минерала для минерала ценного материала в породе.

Задача также решается устройством для осуществления соответствующего изобретению способа, содержащим

по меньшей мере одну буровую установку,

по меньшей мере одно устройство для обеспечения газового потока, которое через по меньшей мере один газопровод соединено с по меньшей мере одной буровой установкой,

по меньшей мере один воздушный сепаратор на каждую буровую установку, который соединен с по меньшей мере одной буровой установкой через по меньшей мере один аэрозольный трубопровод,

по меньшей мере одно устройство для выполнения определения свойства по меньшей мере одной из фракций, и

по меньшей мере один вычислительный блок, соединенный линией передачи данных с по меньшей мере одним устройством для определения свойства и для коррелирования его с локальной величиной зерна минерала для минерала ценного материала в породе.

Изобретение использует знание о том, что свойства буровой мелочи, которая создается буровой установкой во время процесса бурения, находятся в непосредственной связи с величиной зерна минералов, которые имеются в пробуриваемой породе. Целенаправленная оценка классифицированной в потоке фракции буровой мелочи позволяет неожиданным образом сделать достаточно точные выводы о величине зерна минерала ценного материала, имеющегося в пробуриваемой породе.

Способ и устройство обеспечивают возможность особенно быстрого и достаточно точного определения величины зерна минерала ценного материала в породе. Определение осуществляется во время процесса бурения, так что данные для каждой скважины предоставляются в зависимости от глубины погружения и актуальным образом. Вместо оценки бурового керна, получаемого при колонковом бурении, для определения соответствующей структуры породы, можно при разведке месторождения просто лишь анализировать буровую мелочь. Число скважин может быть заметно увеличено, так как больше не требуются затратные лабораторные анализы буровых кернов. В частности, теперь также могут использоваться взрывные скважины (шпуры) для определения соответствующей структуры породы, которые размещаются в более тесном растре, чем разведывательные скважины. Взрывные скважины проходятся в типовом случае с горизонтальным расстоянием от 2 до 5 м, причем данные могут предоставляться с разрешением по вертикали в дм-диапазоне. Таким способом возможно особенно быстрое и точное моделирование месторождения и, как следствие, особенно эффективная разработка месторождения.

В предпочтительном выполнении способа осуществляется определение свойства таким образом, что выполняется анализ величины частиц на частицах фракций с равнопадаемостью, причем по меньшей мере в одной из фракций получают две фракции частиц с различными средними величинами частиц, которые за счет прерывистого гранулометрического состава отделяются друг от друга, причем величины d частиц первой фракции частиц применяются в качестве меры для локальной величины зерна минерала ценного материала в породе. Под прерывистым гранулометрическим составом здесь понимается область, в которой для определенных величин частиц не имеется частиц при анализе величин частиц.

В случае, когда анализ величин частиц по меньшей мере двух фракций показывает прерывистый гранулометрический состав, та первая фракция частиц применяется в качестве меры для локальной величины зерна минерала ценного материала в породе, которая получена из фракции, для которой прерывистый гранулометрический состав является наибольшим, то есть расстояние между первой и второй фракциями частиц является наибольшим.

Распределение величин частиц в буровой мелочи, которая получена в процессе бурения на буровой установке, находится в прямой взаимосвязи с величиной зерна минерала для минералов, которые имеются в пробуриваемой породе. Целенаправленная оценка распределения величин частиц классифицированной в потоке фракции буровой мелочи позволяет неожиданным образом делать достаточно точные выводы относительно величин зерна минерала ценного материала, имеющихся в пробуриваемой породе.

Устройство для выполнения определения свойства фракций выполнено предпочтительным образом для выполнения анализа величин частиц, причем устройство и/или по меньшей мере один вычислительный блок выполнен с возможностью регистрации величин частиц первой фракции частиц и коррелирования их с локальной величиной зерна минерала ценного материала в породе.

В общем случае в настоящее время для способа рассматривается в качестве требуемого то, что минерал ценного материала в породе имеет плотность, составляющую по меньшей мере 1,5 плотности других минералов. При меньших различиях по плотности при анализе величин частиц одной из полученных после классификации в потоке фракций буровой мелочи получаются неразличимые или не оцениваемые однозначно друг от друга фракции частиц, которые разделены посредством прерывистого гранулометрического состава.

Так как между возникновением буровой мелочи и оценкой распределения величин частиц классифицированных в потоке фракций буровой мелочи существует некоторая разность по времени, она должна, разумеется, учитываться при создании модели, чтобы иметь возможность локально ассоциировать с породой корректную величину зерна минерала.

Предпочтительным образом, определяется локальная величина зерна минерала ценного материала в форме рудного минерала. В качестве «руды» обозначаются природные минеральные агрегаты, представляющие хозяйственный интерес, из которых посредством обработки может выделяться один или более ценных материалов. Чаще всего это минералы, которые содержат больше или меньше металлических компонентов, таких как, например, железо, медь, никель, олово, цинк, серебро, золото и т.д.

В особенно предпочтительном выполнении способа анализ величин частиц, классифицированных в потоке фракций, осуществляется автоматически, в частности, посредством оптического анализа, особенно предпочтительно посредством лазерной дифракции. При этом частицы выбранной фракции оптически регистрируются и измеряются.

В частности, производится анализ величин частиц для частиц с равнопадаемостью фракций непрерывно во время их падения, например, непосредственно на соответствующем отводном канале или разгрузочной шахте для фракции на воздушном сепараторе. Таким образом, результат анализа находится в особенно тесной временной взаимосвязи с бурением в определенном местоположении в породе и может простым способом учитываться в вычислениях при знании скорости транспортировки буровой мелочи.

Во время процесса бурения, в частности, определяются глубина погружения бурового долота буровой установки и/или данные местоположения для местоположения бурового долота в месторождении или залежи и логически связываются с относящейся к этому месту мерой для локальной величины зерна минерала, чтобы отсюда определить трехмерное распределение величин зерна минерала ценного материала в месторождении или залежи. Этот процесс также обозначается как моделирование месторождения, как уже пояснялось ранее. Для того чтобы по возможности точно определять текущее местоположение бурового долота в течение бурения в месторождении или залежи, в частности, измеряется глубина бурения и наклон скважины и местоположение точки приложения сил при бурении, предпочтительно с помощью по меньшей мере одного блока GPS.

Предпочтительным образом на буровой установке регистрируется по меньшей мере один заданный параметр бурения и по меньшей мере одно измеренное значение, характеризующее текущий режим бурения буровой установки. Затем предпочтительно выполняется вычислительное исключение зависимости по меньшей мере одного измеренного значения от по меньшей мере одного параметра бурения, и полученная по меньшей мере одна характеристика, зависимая от текстуры породы, применяется в качестве дополнительной меры для определения локальной величины зерна минерала ценного материала. Это повышает точность определения величин зерна минерала ценного материала.

По меньшей мере один параметр бурения образован, например, из прижимающего усилия бурового долота буровой установки, числа оборотов бурового долота, материала бурового долота, геометрии бурового долота, объемного расхода газа газового потока, длительности использования или состояния износа бурового долота, частоты ударов бурового долота и т.п. Частота ударов получается при этом, в числе прочего, из данных прижимающего усилия и данных газового потока.

По меньшей мере одно измеренное значение, характеризующее текущий режим бурения, выбирается, в частности, из группы измеренных значений, включающей в себя скорость бурения, результирующий вращающий момент на силовой вращающейся головке бурового долота, давление газа газового потока, ввод энергии в буровую установку, колебательный режим буровых штанг буровой установки и т.п.

Так, например, скорость бурения, в том числе, зависит от твердости и состава пробуриваемой породы, причем высокая твердость и/или скопление твердых минералов приводят к снижению скорости бурения. Кроме того, скорость бурения зависит от того, какая буровая установка и буровой инструмент используются. В частности, здесь имеют значение тип, геометрия и состояние износа бурового долота. Эти параметры бурения, разумеется, надо учитывать при оценке скорости бурения.

По меньшей мере один вычислительный блок устройства соединен информационно-технически с по меньшей мере одним устройством. Под этим понимается соединение посредством кабельной проводки, но в особенности беспроводное соединение. Беспроводная передача данных к по меньшей мере одному вычислительному блоку позволяет реализовать защищенное от пыли и сотрясений расположение вычислительного блока, пространственно отделенное от позиции бурения.

По меньшей мере один вычислительный блок устройства, кроме того, предпочтительно выполнен с возможностью регистрации по меньшей мере одного параметра бурения или по меньшей мере одного измеренного значения на буровой установке, характеризующего текущий режим бурения буровой установки. Для этого могут служить имеющиеся на буровой установке датчики, или на буровой установке устанавливаются дополнительные датчики.

По меньшей мере один вычислительный блок, кроме того, предпочтительно выполнен с возможностью вычислительного исключения зависимости по меньшей мере одного измеренного значения, характеризующего текущий режим бурения буровой установки, от по меньшей мере одного параметра бурения, и вычисления по меньшей мере одной характеристики, зависимой от текстуры породы, которая образует дополнительную меру для локальной величины зерна минерала ценного материала и/или твердости породы. Вычислительное исключение зависимости от параметров бурения требует обозримого количества предварительных опытов, в которых определяются и коррелируются друг с другом отдельные параметры влияния. Полученная таким способом база данных предпочтительно сохраняется в по меньшей мере одном вычислительном блоке и служит для определения характеристики, зависимой только от текстуры породы.

Наконец, по меньшей мере один вычислительный блок предпочтительно выполнен с возможностью определения локальной величины зерна минерала ценного материала на основе упомянутой меры и дополнительной меры. Тем самым еще более повышается точность определения локального значения величины зерна минерала для минерала ценного материала.

По меньшей мере один воздушный сепаратор и по меньшей мере одно устройство для определения свойства выбранной фракции, в частности, для выполнения анализа величин частиц, предпочтительно расположены в непосредственной близости от буровой установки, в частности, на буровой установке. За счет этого минимизируется время для транспортировки буровой мелочи от места возникновения к воздушному сепаратору и необходимое время анализа. В качестве воздушного сепаратора предпочтительно используется сепаратор с поперечным потоком.

В предпочтительном выполнении устройства на по меньшей мере одной буровой установке имеется по меньшей мере один датчик корпусного шума для регистрации по меньшей мере одного измеренного значения, характеризующего текущий режим бурения, в форме колебательного режима буровых штанг буровой установки. Исходя из вибрации буровых штанг, можно сделать вывод о свойствах породы, например, твердости породы, которая пробуривается в текущий момент.

На основе определенной на по меньшей мере одном вычислительном устройстве модели и далее переданных на нее значений, с использованием по меньшей мере одного вычислительного устройства предпочтительно может осуществляться управление режимом добычи в области месторождения или залежи, прежде всего в отношении подрыва, транспортировки и хранения добытой породы, а также размельчения породы. Так, при знании модели и тем самым локальной величины зерна минерала для минерала ценного материала и, при необходимости, локальной твердости породы, можно корректировать локально используемое количество взрывчатого вещества, добытую породу в зависимости от свойства можно хранить на различных местах или дополнительно размельчать в различной степени, чтобы раскрывать минерал ценного материала.

Фиг.1-3 должны на примере пояснять возможный способ и устройство согласно изобретению. При этом на чертежах показано следующее:

Фиг.1 - схематичное представление хода выполнения способа;

Фиг.2 - схематичное представление устройства для выполнения способа;

Фиг.3 - схематичное представление основных потоков данных и материалов для способа.

Фиг.1 схематично показывает ход выполнения способа для определения локальной величины зерна минерала для минерала ценного материала в породе 10а месторождения или залежи 10 (см. также фиг.2). Порода 10а содержит минерал ценного материала в форме халькопирита и другой минерал в форме кварца, причем минерал ценного материала имеет плотность, по меньшей мере в 1,5 раза превышающую плотность другого минерала.

В породе 10а посредством буровой установки 1 исходя из точки 1а приложения усилия бурения выполняется процесс бурения, причем образуется буровая мелочь 7, 8, включающая в себя частицы 7 из минерала ценного материала и частицы 8 из другого минерала. За счет ввода газового потока посредством блока 2 через газопровод 3 в буровую установку 1 в направлении бурового долота 1b, буровая мелочь 7, 8 уносится от бурового долота 1b. Из буровой мелочи 7, 8 и газового потока образуется текучий аэрозоль 4, который транспортируется противоположно направлению бурения на земную поверхность. Аэрозоль 4 направляется по аэрозольному трубопроводу 4а от буровой установки 1 к воздушному сепаратору 5, здесь в форме сепаратора с поперечным потоком, и выполняется классификация в газовом потоке 9, причем буровая мелочь 7, 8 разлагается на по меньшей мере две, в данном примере на три фракции 6а, 6b, 6с. Однако буровая мелочь может также разлагаться на большее количество фракций. Каждая фракция 6а, 6b, 6с включает в себя, соответственно, частицы буровой мелочи 7, 8, характеризуемые равнопадаемостью, то есть, например, во фракции 6с находятся как мелкие частицы 7' из минерала ценного материала, так и заметно более крупные частицы 8' другого минерала с меньшей плотностью, которые на основе одинаковой скорости оседания уносятся газовым потоком 9 в одинаковой степени.

Теперь над всеми тремя фракциями 6а, 6b, 6с выполняется анализ величин частиц. Он может проводиться последовательно, но предпочтительно выполняется одновременно для всех фракций 6а, 6b, 6с, которые высыпаются из разгрузочных шахт 5а, 5b, 5c воздушного сепаратора 5. Конкретная последовательность действий показана в качестве примера для фракции 6с, которая высыпается из разгрузочной шахты 5c воздушного сепаратора 5. При этом определяется частотность (распространенность) h частиц для каждой величины d частицы или диаметра частицы. Получаются две фракции 7а, 8а частиц с различными средними величинами dm1 и dm2 частиц, которые здесь являются разделенными друг от друга за счет прерывистого гранулометрического состава. Под прерывистым гранулометрическим составом здесь понимается область, в которой для определенных величин частиц не имеется частиц.

Затем анализ величин частиц дополнительно оценивается для той фракции, в которой расстояние между двумя фракциями частиц максимально. Область прерывистого гранулометрического состава соответственно здесь особенно велика. Здесь принимается, что для фракции 6с это условие выполняется.

Величина d частиц первой фракции 7а частиц фракции 6с служит теперь в качестве меры для локальной величины зерна минерала для минерала ценного материала в породе 10а. При этом величина d частиц первой фракции 7а частиц пропорциональна величине зерна минерала для минерала ценного материала в породе 10а.

На основе определенной локальной величины зерна минерала породы на каждое место бурения и глубину погружения бурового долота в породу, можно теперь создать модель 100 месторождения. Если на достаточном количестве мест бурения были определены величины зерна минерала ценного материала на различных глубинах погружения, то модель 100 месторождения достаточно точно отображает трехмерную картину месторождения, причем в ней можно видеть пространственные слои 50, 60, 70, 80, 90 породы с различной локальной величиной зерна минерала ценного материала. Исходя от точки 1а приложения усилия бурения, здесь перпендикулярно глубине погружения были определены пять различных величин зерна минерала для минерала ценного материала.

Фиг.2 схематично показывает устройство для выполнения способа в области месторождения 10 с породой 10а, показанной в разрезе. Устройство содержит буровую установку 1 с буровым долотом 1b и блок 2 для обеспечения газового потока для образования аэрозоля 4, который через по меньшей мере один газопровод 3 соединен с буровой установкой 1. Устройство также содержит воздушный сепаратор 5, который соединен с буровой установкой 1 через аэрозольный трубопровод 4а.

Для того чтобы выполнить классификацию в потоке буровой мелочи 7, 8, воздушный сепаратор 5 в этом примере снабжается от блока 2 через дополнительный газопровод 3' газовым потоком 9 (см. фиг.1). Устройство также содержит устройство 11 для выполнения анализа величин частиц на частицах, обладающих равнопадаемостью, фракций 6а, 6b, 6с, а также соединенный с ним информационно-технически, но размещенный отдельно от места бурения вычислительный блок 12. Устройство 11 выполняет здесь оптический анализ, в частности, посредством лазерной дифракции, и устанавливается последовательно на соответствующей разгрузочной шахте 5а, 5b, 5c воздушного сепаратора 5 для фракций 6а, 6b, 6с, где фракции 6а, 6b, 6с как раз находятся в свободном падении. Альтернативно и предпочтительно имеется столько устройств 11, сколько разгрузочных шахт 5а, 5b, 5c, причем каждое установлено на соответствующей разгрузочной шахте 5а, 5b, 5c воздушного сепаратора 5, чтобы одновременно выполнять анализ величин частиц для каждой из фракций 6а, 6b, 6с.

Определенные устройством 11 результаты анализа величин частиц могут оцениваться либо в устройстве 11 и оценка может передаваться на вычислительный блок 12, либо вычислительный блок 12 берет на себя оценку. При оценке фракции частиц каждой фракции 6а, 6b, 6с анализируются, и выбирается та фракция, для которой расстояние между первой фракцией 7а частиц и второй фракцией 7b частиц является максимальным. Первая фракция 7а частиц этой выбранной фракции 6а, 6b, 6с применяется для определения локальной величины зерна минерала ценного материала в породе 10а, так как между ними существует корреляция.

Для того чтобы местоположение бурения буровой установки 1 в месторождении или залежи 10 можно было регистрировать, буровая установка 1 содержит по меньшей мере один GPS-блок 14. Данные местоположения, в частности, текущая глубина погружения бурового долота 1b, и по меньшей мере одно измеренное значение, характеризующее текущий режим работы, например, скорость бурения, передаются, в частности, по радиосвязи 15 на вычислительный блок 12, установленный пространственно отдельно от позиции бурения.

На основе имеющихся теперь данных посредством вычислительного блока 12 устанавливается модель 100 месторождения или модель залежи.

На буровой установке 1 предпочтительно также установлен датчик 13 корпусного шума, который служит для регистрации дополнительного измеренного значения, характеризующего текущий режим бурения, в данном случае колебательный режим буровых штанг 1с буровой установки 1. Зная заданные на буровой установке 1 параметры бурения и колебательный режим буровых штанг 1с, можно исключить зависимость колебательного режима от параметров бурения путем вычислений с помощью дополнительного вычислительного блока 12а, который расположен вблизи буровой установки 1. Получается зависимая от текстуры породы характеристика, которая может использоваться в качестве дополнительной меры для определения локальной величины зерна минерала для минерала ценного материала, и, в частности, дополнительно может использоваться твердость породы. Данные колебательного режима, как правило, настолько обширны, что передача данных для них посредством радиосвязи на вычислительный блок 12 могла бы быть реализована лишь с трудом. Во всяком случае, установленный непосредственно на месте работ вычислительный блок 12а может передать по радиосвязи выполненную оценку данных колебаний от дополнительного вычислительного блока 12а на удаленно расположенный вычислительный блок 12.

Фиг.3 схематично показывает основные потоки данных и материала для возможного способа. Вычислительный блок 12 посредством источника D данных снабжается, как правило, известными параметрами BP бурения, причем в качестве источника данных может служить обслуживающий персонал и/или иные электронные приборы. Параметры ВР бурения передаются в форме данных относительно типа буровой установки 1, типа и геометрии бурового долота буровой установки 1, длительности использования, в течение которой буровое долото уже эксплуатировалось, усилия прижатия и/или числа оборотов бурового долота и т.д. При этом, как правило, используется проводная линия передачи данных. В процессе бурения от буровой установки 1 или имеющихся на ней приемников измеренных значений передаются характеризующие режим бурения измеренные значения MW на вычислительный блок 12. Измеренные значения MW представляют собой, например, скорость бурения, ввод энергии в буровую установку 1 и т.д. Кроме того, от по меньшей мере одного GPS-блока 14 передаются текущие данные местоположения BMD буровой установки 1, в частности бурового долота, на вычислительный блок 12.

Сформированная буровой установкой буровая мелочь ВК после образования аэрозоля передается на воздушный сепаратор 5 и классифицируется в потоке. Фракции, которые выдаются из разгрузочных шахт воздушного сепаратора 5, анализируются по меньшей мере одним устройством 11 в отношении имеющихся в них распределений величин частиц. Определенные данные PGA анализа, при необходимости после дополнительной оценки в устройстве 11 относительно фракции с наибольшим прерывистым гранулометрическим составом, передаются на вычислительное устройство 12.

После того как измеренные значения MW, данные местоположения BMD и данные PGA анализа величин частиц в области позиции бурения BG получены, они предпочтительно беспроводными средствами 15 (см. пунктирные линии) передаются на пространственно удаленный вычислительный блок 12.

Измеренные значения MW для режима бурения, которые имеются в форме данных колебаний SDMW, передаются по проводному соединению 15а на дополнительный вычислительный блок 12а и здесь непосредственно в области позиции бурения BG оцениваются, и затем беспроводными средствами 15 передаются на вычислительный блок 12.

На основе определенной в вычислительном блоке модели 100 осуществляется, в частности, управление режимом добычи в области месторождения или залежи, прежде всего в отношении подрыва, транспортировки и хранения добытой породы, а также размельчения породы. Так, зная модель 100 и при необходимости локальную твердость породы, можно, например, корректировать локально используемое количество взрывчатого вещества, добытую породу в зависимости от свойства хранить в различных местах или размельчать в различной степени.

На фиг.1-3 показаны только примеры для способа и устройства. Специалист сможет без труда согласовать соответствующее изобретению устройство и соответствующий изобретению способ с соответствующим месторождением или соответствующей залежью, чтобы определять локальные величины зерна минералов для имеющихся минералов ценных материалов.

Так, естественно, в зависимости от месторождения или залежи, можно выполнять бурение вертикально, и/или горизонтально, и/или наклонно в недра земли. Кроме того, может использоваться другой тип воздушного сепаратора и/или устройства для выполнения определения свойства выбранной фракции. Так, например, можно осуществлять ситовый анализ фракций, классифицированных в потоке, на фракции частиц, причем это в общем случае требует больше временных затрат, чем оптический анализ величин частиц.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ ПРОСТРАНСТВЕННОЙ ПРОТЯЖЕННОСТИ ФАЗЫ МИНЕРАЛА ЦЕННОГО МАТЕРИАЛА В ПОРОДЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ ПРОСТРАНСТВЕННОЙ ПРОТЯЖЕННОСТИ ФАЗЫ МИНЕРАЛА ЦЕННОГО МАТЕРИАЛА В ПОРОДЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ ПРОСТРАНСТВЕННОЙ ПРОТЯЖЕННОСТИ ФАЗЫ МИНЕРАЛА ЦЕННОГО МАТЕРИАЛА В ПОРОДЕ
Источник поступления информации: Роспатент

Показаны записи 411-420 из 1 427.
20.08.2015
№216.013.6ee3

Ротор турбомашины и способ его сборки

Ротор турбомашины содержит вращающийся элемент с установленной на нем лопаткой. Лопатка содержит хвостовик с выступающей структурой, формирующей стопорную поверхность, поддерживающую установленный хвостовик относительно вращающегося элемента под действием силы, направленной радиально внутрь....
Тип: Изобретение
Номер охранного документа: 0002559957
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f91

Выхлопной диффузор газовой турбины

Выхлопной диффузор (10) для газовой турбины имеет расширяющийся в направлении выхода (20) диффузора проточный канал (22), в центре которого предусмотрен распространяющийся в осевом направлении направляющий аппарат (14). Направляющий аппарат 14 по меньшей мере на одном осевом участке своей...
Тип: Изобретение
Номер охранного документа: 0002560131
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fe1

Способ и устройство управления для определения длины по меньшей мере одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины по меньшей мере одного участка пути, регистрации сообщений о прохождении, вызванных прохождением...
Тип: Изобретение
Номер охранного документа: 0002560211
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72d9

Система, включающая в себя уплотнение вала

Изобретение касается уплотнения вала, которое включает в себя более одного уплотнительного модуля, по меньшей мере один подвод жидкости и один отвод жидкости, снабженной главным уплотнением, на которое приходится наибольшая часть разности давлений. Второе главное уплотнение выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002560971
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7383

Динамоэлектрическая машина с воздушно-водяным охлаждением

Изобретение относится к электротехнике, к охлаждению динамоэлектрических машин. Технический результат состоит в улучшении охлаждения. Ветрогенератор содержит выполненный в виде листового пакета статор (1) с системой обмотки, образующей на торцах статора (1) лобовые части (16) обмотки....
Тип: Изобретение
Номер охранного документа: 0002561146
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74cd

Способ эксплуатации подводной лодки, а также подводная лодка

Группа изобретений относится к оборудованию для подводных лодок. При способе эксплуатации подводной лодки используют приводной двигатель, подпитываемый через импульсные вентильные преобразователи частоты. В зависимости от вариантов подключения его фазных обмоток получают два режима его работы...
Тип: Изобретение
Номер охранного документа: 0002561476
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74d9

Защитный поддон для высокоскоростных поездов

Изобретение относится к железнодорожному транспорту, в частности к высокоскоростным поездам. Защитный поддон для высокоскоростных поездов расположен под полом (1) вагона по всей пространственной длине подполья и выполнен в виде каркаса (2), который обшит защитным полом (3) и боковыми несущими...
Тип: Изобретение
Номер охранного документа: 0002561488
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7587

Исполнительный элемент для тормозной системы рельсового транспортного средства

Исполнительный элемент (7) для рельсового транспортного средства содержит блок (6) определения заданного значения, причем блок (6) определения заданного значения на выходе (А1) предоставляет заданное значение (SSoll) или скорректированное под воздействием редуцирующего сигнала (RS) устройства...
Тип: Изобретение
Номер охранного документа: 0002561662
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7658

Способ и устройство для управляющей коммуникации между сцепленными частями железнодорожного состава

Изобретение относится к области автоматики и телемеханики и может использоваться для управления коммуникациями между сцепленными частями железнодорожного состава. Техническое решение включает в себя сцепленные части железнодорожного состава, имеющие механические и электрические (ЕК) сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002561885
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76a0

Элемент теплозащитного экрана

Элемент теплозащитного экрана камеры сгорания газотурбинного двигателя (14) с боковой стенкой (16), имеющей углубление (4) с ориентированным в направлении несущей конструкции (17) пропускным отверстием (30). В это углубление (4) может устанавливаться крепежный винт (18), который при этом...
Тип: Изобретение
Номер охранного документа: 0002561957
Дата охранного документа: 10.09.2015
Показаны записи 411-420 из 943.
20.06.2015
№216.013.575c

Способ синтеза фуллерида металлического нанокластера и материал, включающий фуллерид металлического нанокластера

Изобретение относится к способу синтеза фуллерида металлического нанокластера и к материалу, включающему фуллерид металлического нанокластера. Способ синтеза фуллерида металлического нанокластера включает механическое сплавление металлических нанокластеров с размером частиц между 5 нм и 60 нм с...
Тип: Изобретение
Номер охранного документа: 0002553894
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.592a

Газотурбинный двигатель и способ эксплуатации газотурбинного двигателя

Газотурбинный двигатель содержит ротор, радиально наружную и внутреннюю статорные части, между которыми проходит воздушный канал компрессора, кольцевой зазор между ротором и радиально внутренней статорной частью, а также выпускной трубопровод. Ротор включает роторную часть подшипника,...
Тип: Изобретение
Номер охранного документа: 0002554367
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59cf

Способ и устройство для безопасной передачи данных

Изобретение относится к способу памяти данных для хранения компьютерного программного продукта и устройству для безопасной передачи данных. Технический результат заключается в повышении безопасности передачи данных. Устройство содержит блок (2) предоставления для предоставления соединений (DV)...
Тип: Изобретение
Номер охранного документа: 0002554532
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a7e

Транспортное средство с установкой водоснабжения и охлаждения

Изобретение относится к транспортному средству, в частности к рельсовому транспортному средству. Транспортное средство включает установку водоснабжения для потребителей (4, 5) воды и установку (1) охлаждения, которая имеет сливной трубопровод для отвода конденсационной воды, возникающей при...
Тип: Изобретение
Номер охранного документа: 0002554707
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a9c

Турбинный аэродинамический профиль

Турбинный аэродинамический профиль содержит тело аэродинамического профиля, систему теплового защитного покрытия, присутствующую в покрытой зоне поверхности, и непокрытую зону поверхности, в которой система теплового защитного покрытия отсутствует. Непокрытая зона поверхности проходит на...
Тип: Изобретение
Номер охранного документа: 0002554737
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b19

Система управления

Изобретение относится, в том числе, к центральному устройству (110) для системы (100) управления для управления системой (10) передачи энергии, имеющей генераторы (30-32) энергии и потребители (40-45) энергии, причем центральное устройство выполнено с возможностью, на основе текущего и/или...
Тип: Изобретение
Номер охранного документа: 0002554862
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b4d

Рельсовое транспортное средство, снабженное устройством защиты от травмирования дверями

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено в области двери устройством (1) защиты от травмирования дверями с бесконтактным принципом действия. Устройство (1) защиты от травмирования дверями снабжено одним внутренним и одним наружным...
Тип: Изобретение
Номер охранного документа: 0002554914
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c9d

Дисковое тормозное устройство для рельсовых транспортных средств

Изобретение относится к области транспортного машиностроения, а именно к дисковым тормозным устройствам рельсовых транспортных средств. Дисковое тормозное устройство содержит тормозной диск для установки на шасси и тормозную систему для обеспечения тормозного усилия. Тормозная система включает...
Тип: Изобретение
Номер охранного документа: 0002555250
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5df0

Выдвижная подножка для рельсового транспортного средства

Изобретение относится к области транспортного машиностроения. Выдвижная подножка для установки под дверным проемом в боковой стенке рельсового транспортного средства имеет корпус и выдвигаемую горизонтально из корпуса платформу подножки. На переднем участке платформы подножки образована система...
Тип: Изобретение
Номер охранного документа: 0002555589
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f5e

Гибкая транспортировочная упаковка

Турбинные лопатки необходимо пересылать из отдаленных мест мира или в эти места. При этом необходимо защищать покрытие турбинных лопаток. С помощью транспортировочной упаковки турбинные лопатки фиксируются на обоих концах, так что турбинные лопатки защищены. 27 з.п. ф-лы, 12 ил.
Тип: Изобретение
Номер охранного документа: 0002555955
Дата охранного документа: 10.07.2015
+ добавить свой РИД