×
20.06.2015
216.013.56b0

Результат интеллектуальной деятельности: СПОСОБ КАЛИБРОВКИ КАНАЛОВ ИЗМЕРЕНИЯ ПЛОТНОСТИ НЕЙТРОННОГО ПОТОКА, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ ПЕРВОГО КОНТУРА ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

№ охранного документа
0002553722
Дата охранного документа
20.06.2015
Аннотация: Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения, и может быть использовано при калибровке каналов измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов. Способ включает измерение и запись величины плотности нейтронного потока при различных условиях его формирования с помощью ионизационной камеры деления. Согласно изобретению калибровку каналов измерения плотности нейтронного потока производят за пределами реактора, при этом измерение плотности нейтронного потока осуществляют двумя измерительными каналами в два этапа: на первом этапе размещают источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, при этом расстояние l от источника нейтронов до этого датчика выбирают таким образом, чтобы скорость счета N в первом измерительном канале соответствовала плотности нейтронного потока на трубопроводе, и регистрируют эту скорость счета N, на втором этапе размещают источник нейтронов напротив датчика второго измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор, и выбирают расстояние l между источником нейтронов и вторым датчиком по формуле , где v - скорость потока теплоносителя; L - расстояние между датчиками на трубопроводе; τ - период полураспада изотопа N, затем настраивают чувствительность второго измерительного канала таким образом, чтобы его скорость счета N была равна после чего устанавливают датчики на трубопровод. Технический результат - повышение точности калибровки каналов измерения плотности нейтронного потока и сокращение времени на ее проведение.
Основные результаты: Способ калибровки каналов измерения плотности нейтронного потока, предназначенных для измерения расхода теплоносителя первого контура ядерного реактора, включающий измерение и запись величины плотности нейтронного потока при различных условиях его формирования с помощью ионизационной камеры деления, отличающийся тем, что калибровку каналов измерения плотности нейтронного потока производят за пределами реактора, при этом измерение плотности нейтронного потока осуществляют двумя измерительными каналами в два этапа: на первом этапе размещают источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, при этом расстояние ℓ от источника нейтронов до этого датчика выбирают таким образом, чтобы скорость счета N в первом измерительном канале соответствовала плотности нейтронного потока на трубопроводе, и регистрируют эту скорость счета N, на втором этапе размещают источник нейтронов напротив датчика второго измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор, и выбирают расстояние ℓ между источником нейтронов и вторым датчиком по формуле , где v - скорость потока теплоносителя;L - расстояние между датчиками на трубопроводе;τ - период полураспада изотопа N,затем настраивают чувствительность второго измерительного канала таким образом, чтобы его скорость счета N была равна после чего устанавливают датчики на трубопровод.

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения, и может быть использовано при калибровке каналов измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов.

Известен способ калибровки каналов измерения плотности нейтронного потока, включающий измерение и запись величины плотности нейтронного потока при различных условиях его формирования [Лобанков В.М. Калибровка скважинной геофизической аппаратуры, Уфа: «Мастер-Копи». - 2011. с.69.]. Недостатком способа являются его ограниченные функциональные возможности, не позволяющие использовать его применительно к калибровке каналов измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов.

Наиболее близким аналогом заявляемого изобретения является способ калибровки каналов измерения плотности нейтронного потока, включающий измерение и запись величины плотности нейтронного потока при различных условиях его формирования, с помощью ионизационной камеры деления [патент RU №2312374, 10.12.2007].

Недостатком этого способа является то, что калибровка каналов измерения плотности нейтронного потока производится непосредственно на ядерном реакторе и требует либо организации специальных режимов его работы, что нежелательно для реакторов АЭС с точки зрения оптимизации их эксплуатационных характеристик, либо ожидания плановых изменений режима работы ядерного реактора, соответствующих задачам проводимой калибровки, что существенно увеличивает время калибровки. Кроме того, низка точность калибровки, поскольку в процессе ее проведения возможны флуктуации мощности ядерного реактора.

Предлагаемым изобретением решается задача оптимизации режима работы АЭС за счет обеспечения возможности проведения калибровки каналов измерения плотности нейтронного потока за пределами ядерного реактора, что также позволяет повысить точность калибровки каналов измерения плотности нейтронного потока и сократить время на ее проведение.

Указанный технический результат достигается тем, что в известном способе калибровки каналов измерения плотности нейтронного потока, включающем измерение и запись величины плотности нейтронного потока при различных условиях его формирования с помощью ионизационной камеры деления, согласно изобретению калибровку каналов измерения плотности нейтронного потока производят за пределами реактора, при этом измерение плотности нейтронного потока осуществляют двумя измерительными каналами в два этапа: на первом этапе размещают источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, при этом расстояние l1 от источника нейтронов до этого датчика выбирают таким образом, чтобы скорость счета N1 в первом измерительном канале соответствовала плотности нейтронного потока на трубопроводе, и регистрируют эту скорость счета N1, на втором этапе размещают источник нейтронов напротив датчика второго измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор, и выбирают расстояние l2 между источником нейтронов и вторым датчиком по формуле

,

где v - скорость потока теплоносителя;

L - расстояние между датчиками на трубопроводе;

τ - период полураспада изотопа 17N,

затем настраивают чувствительность второго измерительного канала таким образом, чтобы его скорость счета N2 была равна

после чего устанавливают датчики на трубопровод.

Признаки, отличающие предлагаемый способ от наиболее близкого к нему известного способа по патенту RU №2312374:

- калибровку каналов измерения плотности нейтронного потока производят за пределами реактора, при этом измерение плотности нейтронного потока осуществляют двумя измерительными каналами в два этапа;

- на первом этапе размещают источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, при этом расстояние l1 от источника нейтронов до этого датчика выбирают таким образом, чтобы скорость счета N1 в первом измерительном канале соответствовала плотности нейтронного потока на трубопроводе, и регистрируют эту скорость счета N1,

- на втором этапе размещают источник нейтронов напротив датчика второго измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор, и выбирают расстояние l2 между источником нейтронов и вторым датчиком по формуле

,

где v - скорость потока теплоносителя;

L - расстояние между датчиками на трубопроводе;

τ - период полураспада изотопа 17N,

- затем настраивают чувствительность второго измерительного канала таким образом, чтобы его скорость счета N2 была равна

после чего устанавливают датчики на трубопровод,

обусловливают возможность проведения калибровки независимо от работы ядерного реактора, что позволяет повысить точность калибровки каналов измерения плотности нейтронного потока, поскольку источники нейтронов (например, калифорниевые источники нейтронов) в отличие от ядерного реактора имеют стабильные во времени характеристики нейтронного потока. Также сокращается время проведения калибровки, поскольку устраняется необходимость ожидания плановых изменений режимов реактора, соответствующих задачам калибровки.

Перед описанием работы предложенного способа необходимо пояснить следующее.

Под воздействием быстрых нейтронов в активной зоне реактора в водном теплоносителе первого контура протекает реакция 17O(n,p)17N, в результате которой образуется короткоживущий радионуклид 17N (азот-17) с периодом полураспада τ=4,14 с, который, в свою очередь, (преимущественно ~95%) претерпевает радиоактивный распад с образованием кислорода-17 и нейтрона n с энергиями 406 (45% числа распадов), 1220 (45% числа распадов) и 1790 (5% числа распадов) кэВ. Нейтронную активность азота-17 качественно регистрируют датчики на основе урановых ионизационных камер деления. Азотная активность теплоносителя (скорость счета N1) в точке расположения первого датчика, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, определяет соответствующую активность (скорость счета N2) в точке расположения второго датчика на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор. Указанные скорости счета связаны между собой соотношением, учитывающим расстояние между датчиками, скорость потока теплоносителя и период полураспада азота-17:

Предложенный способ осуществляется следующим образом.

На первом этапе размещают в лабораторных условиях источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора. При этом активность источника может быть в достаточной степени произвольной, главные условия, предъявляемые к источнику, это, во-первых, чтобы его линейные размеры были значительно меньше расстояния l1 от источника нейтронов до датчика, во-вторых, чтобы его активность была достаточной для того, чтобы обеспечить за счет выбора расстояния l1 заданную величину скорости счета N1 в первом измерительном канале.

Величину скорости счета N1 выбирают следующим образом. Из эксплуатационных характеристик реакторов ВВЭР-1150 на АЭС нового поколения (Калининская АЭС) известно, что при работе на номинальной мощности плотность нейтронного потока на прямолинейном участке трубопровода первого контура со стороны выхода теплоносителя из реактора на расстоянии 1 м от его изгиба и на расстоянии 100 мм от тепловой защиты трубопровода (место установки первого датчика) составляет Ф=3 700-5000 н/см2 с. Ориентировочная скорость счета N1 в этой точке может быть оценена по формуле

N1=Фξ, где ξ - импульсная чувствительность измерительного канала.

Импульсная чувствительность измерительного канала с камерой деления типа КНК-15-1 и интенсиметром АИССчИТ (разработка ФГУП «НИТИ им. А.П. Александрова») составляет порядка 1 имп.см-2/н, откуда скорость счета при указанных выше условиях составит N1=3700-5000 имп./с.

Далее выбирают расстояние l1 таким, чтобы скорость счета в первом измерительном канале была равна N1.

Кроме того, известно, что плотность нейтронного потока изменяется обратно пропорционально квадрату расстояния от источника нейтронов, поэтому правомерно записать выражение:

Приравнивая выражения (1) и (2), определяют на каком расстоянии от источника до датчика второго измерительного канала будет реализована плотность нейтронного потока, при которой скорость счета N2 во втором измерительном канале должна иметь значение:

и подстраивают чувствительность второго измерительного канала таким образом, чтобы было реализовано именно это значение.

После такой калибровки устанавливают датчики на трубопровод первого контура ядерного реактора на расстоянии L один от другого.

В качестве примера можно привести расчет данных для параметров, характерных для реактора ВВЭР-1150. Прямолинейный участок трубопровода, на котором устанавливаются датчики, имеет длину L=6 м, скорость потока теплоносителя v=6 м/с. При этих данных калибровка второго измерительного канала должна производиться при установке датчика на расстоянии от источника нейтронов. Чувствительность канала необходимо настроить таким образом, чтобы обеспечить скорость счета .

Например, при выбранном значении скорости счета N1=4000 имп./с скорость счета во втором измерительном канале в указанных условиях должна быть ниже, чем в первом на 16% и составить 3360 имп./с.

Для осуществления предлагаемого способа можно использовать калифорниевые источники нейтронов типа ИНК, в качестве датчиков - ионизационные камеры деления КНК-15-1, в качестве интенсиметров - блоки вычисления интенсивности сигнала, выпускаемые ФГУП «НИТИ им. А.П. Александрова».

Способ калибровки каналов измерения плотности нейтронного потока, предназначенных для измерения расхода теплоносителя первого контура ядерного реактора, включающий измерение и запись величины плотности нейтронного потока при различных условиях его формирования с помощью ионизационной камеры деления, отличающийся тем, что калибровку каналов измерения плотности нейтронного потока производят за пределами реактора, при этом измерение плотности нейтронного потока осуществляют двумя измерительными каналами в два этапа: на первом этапе размещают источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, при этом расстояние ℓ от источника нейтронов до этого датчика выбирают таким образом, чтобы скорость счета N в первом измерительном канале соответствовала плотности нейтронного потока на трубопроводе, и регистрируют эту скорость счета N, на втором этапе размещают источник нейтронов напротив датчика второго измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор, и выбирают расстояние ℓ между источником нейтронов и вторым датчиком по формуле , где v - скорость потока теплоносителя;L - расстояние между датчиками на трубопроводе;τ - период полураспада изотопа N,затем настраивают чувствительность второго измерительного канала таким образом, чтобы его скорость счета N была равна после чего устанавливают датчики на трубопровод.
СПОСОБ КАЛИБРОВКИ КАНАЛОВ ИЗМЕРЕНИЯ ПЛОТНОСТИ НЕЙТРОННОГО ПОТОКА, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ ПЕРВОГО КОНТУРА ЯДЕРНОГО РЕАКТОРА
СПОСОБ КАЛИБРОВКИ КАНАЛОВ ИЗМЕРЕНИЯ ПЛОТНОСТИ НЕЙТРОННОГО ПОТОКА, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ ПЕРВОГО КОНТУРА ЯДЕРНОГО РЕАКТОРА
СПОСОБ КАЛИБРОВКИ КАНАЛОВ ИЗМЕРЕНИЯ ПЛОТНОСТИ НЕЙТРОННОГО ПОТОКА, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ ПЕРВОГО КОНТУРА ЯДЕРНОГО РЕАКТОРА
СПОСОБ КАЛИБРОВКИ КАНАЛОВ ИЗМЕРЕНИЯ ПЛОТНОСТИ НЕЙТРОННОГО ПОТОКА, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ ПЕРВОГО КОНТУРА ЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 50.
18.05.2019
№219.017.595a

Способ электроискровой обработки металлов

Изобретение относится к электроискровой обработке металлов и может быть использовано при поверхностном легировании, разметке листов, для маркировки изделий и выполнения информационных и художественных рисунков. Способ электроискровой обработки изделия из металла включает перемещение электрода,...
Тип: Изобретение
Номер охранного документа: 0002414999
Дата охранного документа: 27.03.2011
29.06.2019
№219.017.9a39

Способ автоматического измерения активности радионуклидов в жидких средах и устройство для его реализации

Изобретение относится к области атомной энергетики. В способе контролируемую среду направляют в одну из N измерительных камер, объемы которых обратно пропорциональны N средним уровням активности, проводят спектрометрическое измерение активности радионуклидов, продолжительность которого либо...
Тип: Изобретение
Номер охранного документа: 0002289827
Дата охранного документа: 20.12.2006
29.06.2019
№219.017.9c08

Устройство контроля герметичности оболочек твэлов

Изобретение относится к области ядерной техники, а именно к контролю герметичности оболочек твэлов по активности продуктов деления в теплоносителе. Устройство контроля герметичности оболочек твэлов содержит два детектора нейтронов и два канала преобразования и питания детекторов нейтронов,...
Тип: Изобретение
Номер охранного документа: 0002349976
Дата охранного документа: 20.03.2009
29.06.2019
№219.017.9c70

Способ получения сорбента для очистки воды от радиоактивного стронция

Изобретение относится к области очистки вод от стронция. Предложен способ получения сорбента для очистки воды от радионуклидов стронция, включающий обжиг гранул кембрийской глины при 750-850°С, осуществление после обжига обработки глины раствором соли железа до насыщения, промывку водой и...
Тип: Изобретение
Номер охранного документа: 0002393011
Дата охранного документа: 27.06.2010
01.08.2019
№219.017.bb42

Устройство локализации кориума ядерного реактора водо-водяного типа

Изобретение относится к системе безопасности атомных электростанций (АЭС) с ядерными реакторами водо-водяного типа (ВВЭР), а именно к устройствам для локализации и охлаждения расплавленного кориума при аварийном выходе его за пределы корпуса реактора при тяжелых авариях с нарушением охлаждения...
Тип: Изобретение
Номер охранного документа: 0002696012
Дата охранного документа: 30.07.2019
01.08.2019
№219.017.bb54

Способ переработки мало- и среднеминерализованных низкоактивных жидких радиоактивных отходов

Группа изобретений относится к области переработки жидких радиоактивных отходов (ЖРО) мембранно-сорбционными методами. Способ переработки мало- и среднеминерализованных низкоактивных жидких радиоактивных отходов включающий предварительную очистку путем подачи с помощью первого насоса низкого...
Тип: Изобретение
Номер охранного документа: 0002696016
Дата охранного документа: 30.07.2019
05.09.2019
№219.017.c6f3

Способ отбора и разбавления пробы жидкой радиоактивной среды и устройство для его осуществления

Группа изобретений относится к области технологии обращения с высокорадиоактивными растворами и может быть использована, например, в составе комплекса средств управления проектными и запроектными авариями на АЭС для получения дополнительной информации о характере повреждения активной зоны...
Тип: Изобретение
Номер охранного документа: 0002699141
Дата охранного документа: 03.09.2019
06.09.2019
№219.017.c7e7

Способ поверки калибратора реактивности

Изобретение относится к области аналого-цифровой вычислительной техники. Технический результат заключается в повышении достоверности поверки имитатора кинетики ядерного реактора. В способе задают значения реактивности и формируют мощностной параметр, изменяющийся во времени в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002699251
Дата охранного документа: 04.09.2019
28.03.2020
№220.018.1160

Высокоградиентный магнитный фильтр с жесткой матрицей

Изобретение относится к устройствам для очистки водных и газовых потоков от содержащихся в них частиц, обладающих ферро-, пара- и диамагнитными свойствами, и может быть использовано в объектах атомной и тепловой энергетики, химической и пищевой промышленности, металлургии, в медицине,...
Тип: Изобретение
Номер охранного документа: 0002717817
Дата охранного документа: 25.03.2020
07.06.2020
№220.018.2531

Устройство для воспроизведения и передачи единиц массовой концентрации газов в жидких средах

Изобретение относится к области измерительной техники, а именно к устройствам для воспроизведения и передачи единиц массовой концентрации газов в жидких средах, предназначенных для поверки и калибровки анализаторов газов и других аналитических приборов, измеряющих содержание растворенных газов...
Тип: Изобретение
Номер охранного документа: 0002722967
Дата охранного документа: 05.06.2020
Показаны записи 21-30 из 30.
25.08.2017
№217.015.c34d

Композиционный фильтрующий материал для очистки водных сред

Изобретение относится к области обработки вод, в частности к композиционным фильтрующим материалам, и предназначено для очистки технологических водных сред от содержащихся в них ионных примесей и взвесей продуктов коррозии с использованием сочетания процессов ионообменной и магнитной очистки....
Тип: Изобретение
Номер охранного документа: 0002618079
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.d3d1

Способ контроля герметичности оболочек твэлов отработавших тепловыделяющих сборок транспортных ядерных энергетических установок

Изобретение относится к способу контроля герметичности оболочек твэлов отработавших тепловыделяющих сборок (ОТВС) транспортных ядерных энергетических установок. В заявленном способе ОТВС помещают в герметичный пенал, заполненный газовым теплоносителем, нагревают пенал с ОТВС и прокачивают...
Тип: Изобретение
Номер охранного документа: 0002622107
Дата охранного документа: 13.06.2017
20.01.2018
№218.016.122d

Способ контроля подкритичности бассейнов выдержки хранилища отработавшего ядерного топлива

Изобретение относится к области хранения ядерного топлива, к способам определения и контроля подкритичности бассейнов выдержки. Способ контроля подкритичности отработавшего ядерного топлива заключается в создании расчетной модели хранилища и определении фрагмента хранилища с максимальными...
Тип: Изобретение
Номер охранного документа: 0002634124
Дата охранного документа: 24.10.2017
18.05.2018
№218.016.50fb

Способ калибровки счетного канала реактиметра в импульсно-токовом режиме

Изобретение относится к области реакторных измерений и может быть использовано в системах контроля ядерных реакторов. Для повышения точности калибровки счетного канала реактиметра и расширения функциональных возможностей способа детектор нейтронов подключают к счетному и токовому каналам...
Тип: Изобретение
Номер охранного документа: 0002653163
Дата охранного документа: 07.05.2018
01.03.2019
№219.016.cb4d

Способ имитации сигнала ионизационной камеры ядерного реактора

Способ предназначен для настройки и поверки приборов измерения мощности и реактивности ядерных реакторов и оперативной проверки их работоспособности. Устанавливают ядерный реактор на фиксированный уровень мощности, регистрируют импульсные сигналы датчиков нейтронного потока с помощью...
Тип: Изобретение
Номер охранного документа: 0002392673
Дата охранного документа: 20.06.2010
29.04.2019
№219.017.448e

Способ измерения расхода теплоносителя первого контура ядерного реактора

Изобретение относится к технике эксплуатации атомных электростанций и может быть использовано для измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов типа ВВЭР. Вносят возмущения по нейтронному потоку в активной зоне реактора перемещением регулирующих стержней системы...
Тип: Изобретение
Номер охранного документа: 0002457558
Дата охранного документа: 27.07.2012
09.05.2019
№219.017.4ada

Способ имитации реактивности ядерного реактора

Изобретение относится к области аналого-цифровой вычислительной техники и может быть использовано для поверки приборов измерения реактивности ядерных реакторов и оперативной проверки их работоспособности. Техническим результатом является сокращение объема устройства памяти в блоке программного...
Тип: Изобретение
Номер охранного документа: 0002287853
Дата охранного документа: 20.11.2006
18.05.2019
№219.017.595a

Способ электроискровой обработки металлов

Изобретение относится к электроискровой обработке металлов и может быть использовано при поверхностном легировании, разметке листов, для маркировки изделий и выполнения информационных и художественных рисунков. Способ электроискровой обработки изделия из металла включает перемещение электрода,...
Тип: Изобретение
Номер охранного документа: 0002414999
Дата охранного документа: 27.03.2011
29.06.2019
№219.017.9a63

Цифровой импульсно-токовый калибратор кинетики ядерного реактора

Изобретение относится к области цифровой вычислительной техники и может быть использовано для поверки приборов измерения реактивности ядерных реакторов. Имитатор содержит блок программного управления, два цифроаналоговых преобразователя, два преобразователя напряжение-ток, четыре...
Тип: Изобретение
Номер охранного документа: 0002287852
Дата охранного документа: 20.11.2006
06.09.2019
№219.017.c7e7

Способ поверки калибратора реактивности

Изобретение относится к области аналого-цифровой вычислительной техники. Технический результат заключается в повышении достоверности поверки имитатора кинетики ядерного реактора. В способе задают значения реактивности и формируют мощностной параметр, изменяющийся во времени в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002699251
Дата охранного документа: 04.09.2019
+ добавить свой РИД