×
20.06.2015
216.013.55e2

Результат интеллектуальной деятельности: СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе устанавливают лазерные установки, фокусирующие устройства которых ориентированы на ледяной покров вниз. Для образования надрезов в ледяном поле его облучение начинают с кромки поля и осуществляют по линиям, параллельным курсу движения ледокола. Разрушение ледяного покрова осуществляется по этим линиям надреза под воздействием нагрузки, создаваемой корпусом ледокола при его движении. Технический результат заключается в сокращении числа операций и состава оборудования, необходимых для реализации способа, в повышении линейной плотности распределения энергии лазерного излучения вдоль линий сканирования, в снижении ледовой нагрузки на корпус судна, в формировании канала для проводки судов правильной формы, ширина которого превосходит максимальную ширину ледокола. 1 з.п. ф-лы, 8 ил.

1. Область техники

Изобретение относится к способам разрушения ледяного покрова для вскрытия прохода через ледовое поле, к судовому оборудованию и к ледоколу для осуществления способа.

2. Уровень техники

Известен способ разрушения ледяного покрова с помощью устройств по патенту №RU 2245275 В63В 35/08, в котором используется лазерная установка, расположенная на днище судна с воздушной подушкой для нанесения поперечных направлению движения судна насечек на льду для создания светогидравлического удара на лед и разрушения его резонансным методом. Достигается повышение эффективности разрушения льда.

Недостатком является применимость способа только для судна на воздушной подушке и необходимость создания изгибно-гравитационной волны.

Известен также способ разрушения льда резонансным методом с передачей энергии лазерного излучения в подледный слой (В.В. Богородский, В.П. Гаврило, О.А Недошивин. Разрушение льда. Методы, технические средства. Л.: Гидрометеоиздат, 1983).

Недостатком является ограничение применения метода только в тонком слое льда при наличии резонансной волны.

Известно использование лазерного излучения для раскалывания льда на поверхностях самолетов - патент США №4900891, НКИ 219/121.6, 1990 г. и патент США №5823474, НКИ 244/134Е, 1998 г. В известных патентах - США№6206325, НКИ 244/134Е, 2001 г. и Канады №2222881, МКИ H02G 7/16, 1998 г. с этой целью используют лазерное излучение с длиной волны в диапазоне 10-11 мкм, соответствующем области поглощения излучения льдом, и происходит скалывание льда.

Недостатком является использование на самолетных поверхностях и локальное действие на тонкие слои, что не позволяет проводить разрушение льда на больших массивах.

Известен способ разрушения ледяного покрова по патенту №KR 20090094924 (А) «ICE BREAKER WITH A HIGH POWER LASER» от 09.09.2009, B63B 35/08, в котором для разрушения льда используется расположенный на носу ледокола лазер высокой мощности, дробящий лед, делая трещины во льду при облучении льда лазерным лучом, тем самым уменьшая воздействие на носовую часть и повышая скорость движения ледокола.

Недостаток известного технического решения состоит в том, что с его помощью невозможно обеспечивать ледоколом широкие каналы для проводки крупногабаритных судов и разрушать толстые массивные ледяные поля.

Известен «Способ разрушения ледяного покрова» по патенту №2463200 RU от 15.04.2011 г., в котором используется облучение ледяного покрова мощным лазерным излучением по линиям концентрации напряжения, создаваемым ледоколом, наезжающим на целое ледяное поле. Данный способ предусматривает такие операции, как нагружение ледяного покрова наезжающим корпусом ледокола, определение линий концентрации напряжений в ледяном покрове, фокусировку лазерного излучения на линиях концентрации напряжений, испарение сфокусированным лазерным излучением льда на этих линиях, испарение льда на глубину, раскалывание ледяного покрова.

«Способ разрушения ледяного покрова» по патенту №2463200 RU от 15.04.2011 г. принят в качестве прототипа как способ, наиболее близкий по своей технической сущности к сущности предлагаемого изобретения.

Недостатком данного способа разрушения ледяного покрова является:

- необходимость создания специального оборудования для реализации операций непрерывного определения линии концентрации напряжения в ледяном покрове, непрерывного наведения лазерного луча на эти линии и сканирования сфокусированного лазерного излучения вдоль этих линий,

- большая длина линий концентрации напряжения, превосходящая длину пути ледокола, вследствие чего сканирование этих линий лучом лазера должно осуществляться со скоростью, значительно превосходящей скорость движения ледокола, что при фиксированной мощности лазера ведет к снижению линейной плотности распределения энергии лазерного излучения вдоль линии сканирования.

3. Раскрытие изобретения

Целью предлагаемого изобретения является сокращение состава операций воздействия мощного лазерного излучения на ледяной покров для снижения ледовой нагрузки на корпус ледокола при его движении в сплошном ледовом поле и формирование канала для проводки судов, а также повышение линейной плотности распределения энергии лазерного излучения вдоль линии облучения ледяного покрова, за счет сокращения длины этих линий и скорости перемещения по ним до длины пути, пройденного ледоколом, и скорости его движения соответственно.

Данная цель достигается путем изменения последовательности операций воздействия на ледовый покров механической нагрузки наезжающего на лед ледокола и энергии мощного лазерного излучения.

Сущность предлагаемого изобретения заключается в том, что в отличие от прототипа в данном способе на ледяной покров вначале воздействуют лазерным излучением, а потом нагружают его механической нагрузкой наезжающего ледокола.

Причем на ледоколе размещают (фиг. 1) три лазерные установки, фокусирующие устройства которых ориентированы на ледяной покров вниз. Причем, одно устройство располагают в диаметральной плоскости перед носом ледокола, второе и третье - симметрично диаметральной плоскости ледокола на расстоянии 1,3 толщины льда от ватерлинии ледокола в наиболее широкой его части и на линии, проходящей перпендикулярно диаметральной плоскости между носом ледокола и его форштевнем.

Причем линейную плотность распределения энергии лазерного излучения вдоль линии облучения ледяного покрова регулируют скоростью движения судна.

Причем скорость движения судна выбирают в зависимости от толщины ледяного покрова.

Причем движение ледокола начинают по чистой воде, перемещая при этом лазерные лучи по трем параллельным линиям с выбранной скоростьюдвижения судна и параллельно направлению движения судна, а не по линиям концентрации напряжения.

Причем воздействуют лазерным излучением на кромку ледяного покрова и по мере движения судна испаряют лед по линиям, параллельным направлению движения ледокола на глубину раскалывания.

Причем нагружают ледяной покров наезжающим на его кромку ледоколом и раскалывают ледовое поле по линиям надрезов, образуя канал, ширина которого превосходит максимальную ширину ледокола на 2,6 толщины льда.

Технический результат заключается в сокращении числа операций и состава оборудования, необходимых для реализации способа, в сокращении длины линий облучения и скорости перемещения лазерного луча по этим линиям до скорости движения ледокола, в повышении за счет этого линейной плотности распределения энергии лазерного излучения вдоль линии облучения ледяного покрова, в снижении ледовой нагрузки на корпус судна, в формировании канала для проводки судов правильной формы, ширина которого превосходит максимальную ширину ледокола на 2,6 толщины льда.

4. Чертежи

Предлагаемое техническое решение иллюстрируется схемами и фотографиями экспериментов по отработке технологий разрушения льда, представленными на фиг. 1-8.

На фиг. 1 показана «Схема расположения лазерных установок на судне и взаимодействия системы «Лазерные установки - ледокол» с ледяным полем». Данная схема на фиг. 1 раскрывает основные принципы размещения фокусирующих устройств лазерных установок на судне и последовательность операций взаимодействия с ледяным полем системы «Лазерные установки - ледокол».

На фиг. 1 отмечены следующие позиции:

- позиции 1, 2, 3 - фокусирующие устройства лазерных установок,

- позиции 4, 5, 6 - линии облучения (линии надрезов) ледяного покрова,

- позиция 7 - луч лазера установки №1,

- позиция 8 - лучи лазера установок №2, 3,

- позиция 9 - центральный надрез ледяного поля,

- позиция 10 - боковые надрезы ледяного поля,

- позиция 11 - кромка ледяного поля,

- позиция 12 - ледокол,

- позиция 13 - диаметральная плоскость судна,

- позиция 14 - ватерлиния судна,

- позиция 15 - направление движения ледокола со скоростью V,

- позиция 16 - ледяное поле.

Фотографии, представленные на фиг. 2 и 4, демонстрируют отдельные эксперименты по резке крупногабаритных массивов льда лучом лазера, в ходе которых впервые подтверждена принципиальная возможность резания мощным лазерным излучением толстого массива льда.

На фиг. 2 представлены фотографии, иллюстрирующие «Воздействие излучения лазера мощностью 30 кВт на крупногабаритный массив льда размеров 1000×500.500 мм3».

На фиг. 3 представлена «Схема эксперимента по резке массива льда 1000×500.500 мм3 излучением лазера мощностью 30 кВт, λл = 1,07 мкм, F = 550 мм, ω0 = 25 мкм», которая показывает кинематику взаимодействия луча лазера с массивом льда при проведении натурных экспериментов по резке льда мощным лазерным излучением.

На фиг. 4 представлены фотографии, иллюстрирующие «Резку куба льда 500×500×500 мм3: а) луч лазера в вертикальной плоскости к поверхности льда, б) завершающая фаза процесса резания».

Фотографии на фиг. 5-8 показывают наиболее характерные эпизоды модельных экспериментов по оценке влияния различных способов надреза ледяного поля на величину ледовой нагрузки на корпус ледокола.

На фиг. 5 представлено «Моделирование надрезов ледяного покрова на всю его толщину (1,5 м) по трем линиям, параллельным курсу движения судна».

На фиг. 6 представлена «Форма канала при отсутствии надрезов».

На фиг. 7 представлена «Форма канала при наличии боковых надрезов».

На фиг. 8 также представлена «Форма канала при наличии боковых надрезов».

5. Осуществление изобретения

Основу применения лазерного излучения для разрушения льда составляет механизм теплового поглощения лазерного излучения в диапазоне спектра поглощения льда (Богородский В.В., Гаврило В.П., Недошивин О.А. Разрушение льда. Методы, технические средства. Л.: Гидрометеоиздат, 1983). При фокусировании излучения с плотностью 15-20 кВт/см2 происходит плавление льда и испарение образовавшейся воды, осуществляется мгновенный фазовый переход лед-вода-пар. Скорость испарения достигает значения 1 мм в 0,01 с. (Квантовая Электроника, 1994, Т. 21, №2, С. 137-141). Воздействие излучения СО2 - лазера на крупные капли ортофосфорной кислоты, воды и ледяные кристаллы сферической формы. В.К. Рудаш). Таким образом, в течение секунды образуется отверстие глубиной до 10 см. При дальнейшем облучении струя пара расширяет входное отверстие во льду.

ОАО «ЦНИИ «Курс» совместно с ОАО «НЦЛСК «Астрофизика» провели исследования (ОАО «ЦНИИ «Курс», научно-технический отчет «Разработка технологий снижения ледовых нагрузок на работающие на континентальном шельфе инженерные сооружения на основе применения мощных лазеров», номер отраслевой регистрации №100862 от 27.05.2013 г.) воздействия непрерывного лазерного излучения (λ=1,07 мкм) оптоволоконного лазера мощностью 30 кВт с оптической системой, обеспечивающей фокусное расстояние 550 мм и диаметр луча в фокусе 250 мкм, на крупногабаритные (1000×500×500 мм3) массивы льда (фиг. 2).

Эксперименты показали, что воздействие мощного лазерного излучения на ледовый покров не приводит к образованию трещин и раскалыванию льда.

При воздействии неподвижного луча лазера на поверхность льда образуется каверна, входной диаметр которой в два раза превосходит ее глубину. При этом время сквозного "прожига" на глубину 500 мм исчисляется десятками секунд.

При ориентации лазерного луча вниз к поверхности льда и движении луча, начиная с боковой поверхности ледяного массива, происходит испарение льда вдоль луча, формируется прорезь (фиг. 3) на всю толщину ледяного массива (фиг. 4а) и его разрушение под действием собственного веса (фиг. 4б).

В ходе этих экспериментов впервые подтверждена принципиальная способность мощных лазеров резать лед толщиной не менее 1 м.

Толщина разрезаемого льда определяется линейной плотностью распределения энергии излучения вдоль линии движения луча лазера по облучаемой поверхности льда и нелинейно связана с характеристиками фокусирующей системы лазера. Величина линейной плотности распределения энергии линейно зависит от мощности лазера и обратно пропорциональна скорости перемещения лазерного луча по облучаемой поверхности.

Результаты выполненных исследований обусловливают необходимый порядок воздействия на ледовый покров различных нагрузок: сначала на боковую поверхность кромки ледового поля воздействуют сфокусированным вниз лазерным излучением, а потом нагружают надрезанное ледовое поле механической нагрузкой наезжающего ледокола.

Известно, что увеличение давления на ледяную пластину приводит к увеличению амплитуды ее прогиба, а изменение температуры и толщины льда приводит к предельным прогибам и к ломке льда (Хейсин Д.Е., Динамика ледяного покрова. П.: Гидрометеоиздат, 1967, 216 с.).

Исследования, выполненные ОАО «ЦНИИ «Курс» совместно с ФГУП «Крыловский государственный научный центр» (ОАО «ЦНИИ «Курс», научно-технический отчет «Разработка технологий снижения ледовых нагрузок на работающие на континентальном шельфе инженерные сооружения на основе применения мощных лазеров», номер отраслевой регистрации №100862 от 27.05.2013 г.), показали, что предварительныйнадрез ледового поля на всю его толщину (1,5 м в пересчете на натуру) впереди по курсу ледокола по трем линиям (фиг. 5), две из которых расположены в носовой части ледокола с левого и правого бортов на расстоянии 1-1,3 толщины ледового покрова в наиболее широкой части корпуса ледокола на уровне ватерлинии, а одна впереди по курсу ледокола снижают ледовую нагрузку на его корпус от 33% до 40% во всем диапазоне исследованных скоростей движения(1-3 узла).

При этом, формируемый канал имеет, в отличие от обычного (фиг. 6.), правильную форму (фиг. 7 и 8), а его ширина превосходит максимальную ширину ледокола.

Практическая реализация способа происходит следующим образом.

В зависимости от класса судна осуществляют подбор необходимой мощности лазерных установок и параметров фокусирующей системы.

В зависимости от формы носовой оконечности судна определяют положение фокусирующих устройств 1-3 лазерных установок (фиг. 1) относительно носа ледокола и размещают их на ледоколе 12. Устройство 1 располагают перед носом судна, устройство 2 и 3 - по левому и правому борту симметрично диаметральной плоскости 13 ледокола 12.

В зависимости от толщины ледового покрова 16 устанавливают расстояние между боковыми фокусирующими устройствами 2, 3 лазерных установок и диаметральной плоскостью 13, таким образом, чтобы эти устройства лазерных установок находились на расстоянии 1,3 толщины ледяного покрова от ватерлинии 14 в наиболее широкой части корпуса ледокола 12.

Ориентируют фокусирующие устройства 1-3 лазерных установок, направляя центральный 7 и боковые 8 лазерные лучи вниз.

В зависимости от толщины ледового покрова 16 и с учетом характеристик лазерных установок назначают скорость 15 движения судна12, определяя, таким образом, линейную плотность распределения энергии лазерного излучения вдоль линии сканирования лучом лазера.

Включают лазерные установки.

Начинают движение ледокола 12 в сторону ледяного поля 12, одновременно перемещая фокусирующие устройства 1 -3 лазерных установок и лазерные лучи 7, 8 по направлению и со скоростью движения 15 ледокола 12. При этом не требуется выполнение операций определения линий концентрации напряжения, наведения на эти линии лазерного луча и сканирования лазером этих линий и создание специального оборудования для их осуществления. При этом длина линий 4, 5, 6, облучаемых лазером, минимальна и совпадает с длиной пути ледокола, а скорость сканирования (скорость перемещения луча лазера) совпадает со скоростью движения судна.

Воздействуют лазерным излучением на ледяное поле 16, начиная с его кромки 11, по линиям 4-6, параллельным направлению движения 15 судна 12, сначала излучением центрального устройства 1, а по мере приближения ледокола 12 к кромке ледяного поля 11 - излучением 8 двух боковых фокусирующих устройств 2, 3.

Испаряют лед и создают надрезы 9 (сечение А-А) и 10 (сечение Б-Б) в ледяном поле 16 вдоль линий 4, 5 и 6 на глубину раскалывания впереди по курсу движения ледокола.

Ледокол 12, приближаясь к кромке 11 надрезанного поля 16, наезжает на нее и создает механическую нагрузку, под воздействием которой при достижении предела прочности происходит разрушение ледяного покрова 16 в истончившемся слое вдоль линий 4-6 надрезов 9 и 10, формируется канал шириной более ширины ледокола.

Достигаемый при реализации предлагаемого изобретения технический результат заключается в сокращении числа операций и состава оборудования, необходимых для реализации способа, в сокращении длины линий облучения и скорости лазера по этим линиям до скорости движения ледокола, в повышении за счет этого линейной плотности распределенияэнергии лазерного излучения вдоль линии облучения ледяного покрова, в снижении ледовой нагрузки на корпус судна, в формировании канала для проводки судов правильной формы, ширина которого превосходит максимальную ширину ледокола.

Предложенный способ разрушения ледяного покрова имеет большое народнохозяйственное и оборонное значение. Данное изобретение направлено на решение одной из актуальных проблем освоения углеводородных месторождений на арктическом шельфе - снижению ледовых нагрузок на суда и инженерные сооружения, работающие в условиях Арктики.

Предложенное техническое решение может быть также применено для снижения ледовых нагрузок на опоры добычных комплексов различных типов, работающих в условиях арктического шельфа и замерзающих морей.

Литература

1. Богородский В.В., Гаврило В.П., Недошивин О.А. Разрушение льда. Методы, технические средства. Л.: Гидрометеоиздат.- 1983. - 232 с.

2. Квантовая Электроника, 1994, Том 21, №2, с. 137-141. Воздействие излучения СО2 - лазера на крупные капли ортофосфорной кислоты, воды и ледяные кристаллы сферической формы. В.К. Рудаш.

3. Хейсин Д.Е. Динамика ледяного покрова. П.: Гидрометеоиздат, 1967, 216 с.

4. ОАО «ЦНИИ «Курс», Научно-технический отчет «Разработка технологий снижения ледовых нагрузок на работающие на континентальном шельфе инженерные сооружения на основе применения мощных лазеров», номер отраслевой регистрации №100862 от 27.05.2013 г.


СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 279.
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7f96

Способ десантирования автомобилей и бронемашин в зону боевых действий

Изобретение относится к области доставки автомобилей и бронемашин в зону боевых действий с использованием десантных кораблей. Для десантирования бронемашин в зону боевых действий погружают бронемашины на десантный корабль и доставляют их в прибрежную зону боевых действий. На большом десантном...
Тип: Изобретение
Номер охранного документа: 0002564259
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.818f

Способ легирования стали

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из отходов изношенного режущего инструмента. В способе осуществляют расплавление отходов в индукционной тигельной печи с последующим проведением химанализа полученного расплава и...
Тип: Изобретение
Номер охранного документа: 0002564764
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86f2

Способ получения пенополиуретанового нанокомпозита

Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную...
Тип: Изобретение
Номер охранного документа: 0002566149
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87f8

Пьезоэлектрический акселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Пьезоэлектрический акселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и первый...
Тип: Изобретение
Номер охранного документа: 0002566411
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9047

Лигатура для титановых сплавов

Изобретение относится к области металлургии и может быть использовано при производстве титановых сплавов. Лигатура для титановых сплавов содержит, мас.%: ванадий 30-50, углерод 1-4, молибден 5-25, титан 5-20, алюминий 20-50, примеси - остальное. Изобретение позволяет за счет добавки в титановый...
Тип: Изобретение
Номер охранного документа: 0002568551
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.904b

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку...
Тип: Изобретение
Номер охранного документа: 0002568555
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90fe

Устройство для получения и хранения атомарного водорода

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и...
Тип: Изобретение
Номер охранного документа: 0002568734
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
Показаны записи 141-150 из 226.
10.08.2015
№216.013.69e1

Информационно-аналитическая система мониторинга обстановки, предупреждения и ликвидации чрезвычайных ситуаций

Изобретение относится к радиолокации и может использоваться для определения состояния морской поверхности, а также для решения задач экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Достигаемый технический результат - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002558658
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7888

Стенд для измерения стато - динамических характеристик физических объектов

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента,...
Тип: Изобретение
Номер охранного документа: 0002562445
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7adc

Каскадная холодильная машина

Изобретение относится к холодильной технике. Каскадная холодильная машина содержит в нижней ветви каскада, установленные последовательно, отделитель жидкости, разделяющий поток хладагента на газообразную и жидкую составляющие, предварительный рекуперативный теплообменник, основной...
Тип: Изобретение
Номер охранного документа: 0002563049
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d02

Устройство для контроля подводного плавсредства с самого плавсредства

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации...
Тип: Изобретение
Номер охранного документа: 0002563599
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d71

Способ контроля обледенения жалюзи воздухоприемной решетки

Изобретение предназначено для определения начала обледенения жалюзи воздухоприемной решетки при исследовании тепловых процессов, осуществляемых в целях защиты от обледенения. Обледенение решетки жалюзи определяют по образованию инея на влажном марлевом бинте, который предварительно укладывают...
Тип: Изобретение
Номер охранного документа: 0002563710
Дата охранного документа: 20.09.2015
+ добавить свой РИД