×
10.06.2015
216.013.5495

Результат интеллектуальной деятельности: СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА

Вид РИД

Изобретение

№ охранного документа
0002553174
Дата охранного документа
10.06.2015
Аннотация: Изобретение относится к извлечению молибдена из растворов. Раствор, содержащий молибден, подкисляют до кислого pH путем добавления неорганической кислоты, затем добавляют по меньшей мере один органический растворитель и непрерывно перемешивают для образования водно-органической эмульсии. В полученную эмульсию добавляют по меньшей мере один ксантогенат щелочного металла для образования комплекса с молибденом, в котором мольное отношение молибден/ксантогенат щелочного металла составляет от 1/6 до 1/2, поддерживают эмульсию при кислом pH путем добавления неорганической кислоты и прекращают перемешивание с обеспечением отделения водной фазы от органической фазы. Обеспечивается легкое отделение молибдена от раствора и получение стабильной формы ксантогената молибдена. 10 з.п. ф-лы, 8 ил., 3 табл., 6 пр.

Изобретение относится к способу селективного удаления молибдена из раствора, содержащего металлы молибден и ванадий. В частности, настоящее изобретение относится к способу селективного удаления Mo из раствора, содержащего металлы молибден и ванадий, с помощью ксантогената щелочных металлов, превращая их в ксантогенат молибдена.

Катализатор, используемый в способе гидрообработки тяжелых остатков в фазе суспензии, содержит сульфид молибдена MoS2. Предшественниками указанного катализатора являются маслорастворимые соединения молибдена, такие, например, как октоат молибдена и нафтенат молибдена. В литературе известно использование ксантогенатов щелочных металлов для флотационной обработки таких минералов, как молибденит. Экстрагентами в случае минералов являются органические вещества, используемые для селективного извлечения сульфидов металлов из смесей минералов. Экстрагирующая способность ксантогенатов повышается с увеличением длины углеродной цепи, однако, при удлинении цепи снижается селективность. Ксантогенаты имеют гетерополярную молекулярную структуру с неполярной углеводородной группой и полярной сульфидной группой. Между сульфидами минералов и полярной группой ксантогената происходит взаимодействие, в результате чего на поверхности минерала образуется водоотталкивающая пленка, что дает возможность частицам минерала выноситься на поверхность пузырьками воздуха. Из известных ксантогенатов, используемых на разрабатываемых месторождениях, можно назвать этилксантогенат натрия, изобутилксантогенат натрия, изопропилксантогенат натрия и амилксантогенат калия. Изобутилксантогенат натрия является отличным экстрагентом сульфидов меди, свинца, цинка, никеля и благородных металлов, присутствующих в минералах в виде сульфидов. Этилксантогенат калия является наиболее селективным экстрагентом, но самым слабым среди всех ксантогенатов, используемых для экстракции сульфидов металлов и минеральных комплексов. Изопропилксантогенат натрия имеет чуть большую экстрагирующую способность, чем этилксантогенат натрия; он используется главным образом в качестве флотационного реагента для сульфидов цветных металлов и в качестве осаждающего вещества в металлургических процессах. Амилксантогенат калия является наиболее мощным экстрагентом минералов, в частности, для сульфидов меди и никеля, и для золота, ассоциированного с пиритом, он также широко применяется в качестве флотационного реагента.

Из патентной заявки WO 02/097144 известен способ селективного удаления молибдена из жидкой смеси, содержащей молибден (в концентрации выше 200 мг/л) и ванадий. Этот способ предусматривает подкисление жидкой смеси, содержащей Mo и V, до кислого pH; затем нужно добавить раствор, содержащий, по меньшей мере, один ксантогенат щелочных металлов в определенных пропорциях, предпочтительно этилксантогенат натрия или этилксантогенат калия, удерживая pH постоянным путем добавления органической кислоты; полученную так смесь затем перемешивают, вызывая осаждение ксантогената молибдена. Способ, описанный в WO 02/097144, имеет различные существенные аспекты, описываемые ниже. Обычно ксантогенаты щелочных металлов (щелочные соли) разлагаются в присутствии воды. Аналогично, молибденовые соли ксантогенатов щелочных металлов быстро разлагаются в воде с образованием пузырьков газа (CS2, COS и CO2) и дезагрегацией первоначальной липкой, похожей на мед, структуры. Специалист в данной области должен свести к минимуму процессы разложения ксантогенатов молибдена, например, в процессе их хранения. Следует удалить воду, чтобы уменьшить разложение ксантогенатов молибдена. Следующим важным недостатком ксантогенатов Mo является трудность в обращении с ними и трудность в обработке, так как они являются липкими, образуют пену (умеренно) на своих поверхностях и, кроме того, нестабильны.

В целях облегчения использования ксантогенатов молибдена в качестве предшественников катализатора в способах каталитической гидрообработки в фазе суспензии вышеуказанные недостатки следует устранить. Поэтому авторы настоящего изобретения разработали инновационное техническое решение, внеся различные модификации в способ, описанный в патентной заявке WO 02/097144, чтобы получить органическую композицию с высокой концентрацией металлического молибдена, которая является стабильной и готовой к применению напрямую в способе каталитической гидрообработки в фазе суспензии. В частности, авторы изобретения подтвердили, что при добавлении, по меньшей мере, одного органического растворителя в раствор, содержащий Mo и V, образуется эмульсия "масло в воде"; затем, по меньшей мере, один ксантогенат щелочного металла (щелочная соль) смешивают с этой эмульсией, чтобы образовать комплекс ксантогената молибдена. Таким образом, ксантогенат молибдена остается в растворе в органической фазе, которая стабильна и которую можно легко отделить от водной фазы. Действительно, в органической фазе ксантогенаты обнаруживают стабильность, подходящую для промышленного применения, кроме того, их можно напрямую использовать в качестве предшественников катализатора, используемого в реакторах каталитической гидрообработки в фазе суспензии.

В свете вышеизложенного, задачей настоящего изобретения является селективное отделение металлического молибдена, главным образом от ванадия, с помощью, по меньшей мере, одного ксантогената щелочного металла, превращая его в ксантогенат молибдена, являющегося предшественником катализатора, используемого в способах каталитической гидрообработки в фазе суспензии.

В одном из своих вариантов осуществления настоящее изобретение относится к способу селективного удаления молибдена из раствора, содержащего молибден, включающему следующие стадии:

- подкисление раствора до кислого pH, меньше или равного 3, путем добавления неорганической кислоты;

- добавление, по меньшей мере, одного органического растворителя в раствор и непрерывное перемешивание, для образования водно-органической эмульсии;

- добавление в водно-органическую эмульсию, по меньшей мере, одного ксантогената щелочного металла общей формулы MeRX, где R означает линейную или разветвленную алкильную группу с числом атомов углерода, больше или равным 2, Me означает щелочной металл, выбранный из Li, Na, K, Rb, Cs и Fr, и X означает ксантогенатную группу, для образования комплекса с молибденом, в котором мольное отношение молибден/ксантогенат щелочного металла варьирует от 1/6 до 1/2, поддержание эмульсии при кислом pH добавлением неорганической кислоты и прекращая перемешивание, чтобы дать возможность отделения водной фазы от органической фазы.

Основным преимуществом способа согласно настоящему изобретения является легкость отделения молибдена от ванадия, получения стабильной формы ксантогената молибдена, подходящей без дополнительной очистки для применения в качестве предшественника катализатора. Ксантогенат молибдена, поскольку он остается в органической фазе, больше не контактирует с водой и, следовательно, не разлагается или он разлагается намного медленнее. Кроме того, эта эмульсия легче в обращении и обработке, так как растворение в органическом растворителе делает ее менее липкой, что снижает адгезию к поверхностям. Наконец, после отделения органической фазы она готова к применению без дополнительной очистки в реакторах каталитический гидрообработки в фазе суспензии, являясь предшественником катализатора.

Дальнейшие задачи и преимущества настоящего изобретения станут выявляться более четко из следующего описания и приложенных фигур, приведенных исключительно в целях иллюстрации, но не ограничения.

На фиг.1 показано изменение эмиссии CS2 вследствие разложения соединения амилксантогената молибдена при его хранении. По оси X отложено время в днях, и по оси Y относительное содержание. Используются следующие символы:

1. Соединение как таковое при комнатной температуре.

2. Соединение как таковое при 50°C.

3. Соединение как таковое и добавка газойля при комнатной температуре.

4. Соединение как таковое и добавка газойля при температуре 50°C.

5. Соединение как таковое и добавка ксилола при комнатной температуре.

6. Соединение как таковое и добавка ксилола при температуре 50°C

7. Соединение как таковое и добавка циклогексана при комнатной температуре.

8. Соединение как таковое и добавка циклогексана при температуре 50°C.

На фиг.2 показано изменение эмиссии COS вследствие разложения соединения амилксантогената молибдена при его хранении. По оси X отложено время в днях, и по оси Y относительное содержание. Использованы такие же символы, как на фиг.1.

На фиг.3 показано изменение эмиссии диметилсульфида вследствие разложения соединения амилксантогената молибдена при его хранении. По оси X отложено время в днях, и по оси Y относительное содержание. Использованы такие же символы, как на фиг.1.

На фиг.4 показано изменение эмиссии этилизопентилдисульфида вследствие разложения соединения амилксантогената молибдена при его хранении. По оси X отложено время в днях, и по оси Y относительное содержание. Использованы такие же символы, как на фиг.1.

На фиг.5 показано изменение эмиссии 3-метил-1-бутанола вследствие разложения соединения амилксантогената молибдена при его хранении. По оси X отложено время в днях, и по оси Y относительное содержание. Использованы такие же символы, как на фиг.1.

На фиг.6 показаны предметные стекла после погружения амилксантогената молибдена в разные органические фазы.

На фиг.7 показано изменение концентрации молибдена и ванадия и окислительно-восстановительного потенциала (в мВ) раствора с добавлением амилксантогената калия концентрацией 30% (масс./об.). По оси X отложены миллилитры 30%-ного (масс./об.) раствора амилксантогената калия, и по оси Y окислительно-восстановительный потенциал в мВ. Использованы следующие символы:

Z: концентрация в г/л

1: мВ

2: г/л Mo

3: г/л V.

На фиг.8 показано изменение pH во время осаждения амилксантогената молибдена в водном растворе. По оси X отложены миллилитры 30%-ного (масс./об.) раствора амилксантогената калия, и по оси Y - величина pH. Использованы следующие символы:

Z: концентрация в г/л

1: pH

2: г/л Mo

3: г/л V.

Подробное описание

Один вариант осуществления настоящего изобретения представляет собой способ селективного удаления молибдена из раствора, содержащего молибден. Молибден является одним из наиболее ценных компонентов катализаторов, используемых в способах каталитической гидрообработки в фазе суспензии. Следовательно, его выделение важно, так как это снижает расходы на добавку свежего катализатора. Исходный раствор содержит растворимые соединения молибдена и ванадия. При осуществлении способа по настоящему изобретению возможно добавление в исходный раствор восстановителя, предпочтительно Na2SO3, чтобы предотвратить образование красного шлама. На первой стадии в указанный раствор добавляют неорганическую кислоту до тех пор, пока не будет достигнут pH, меньше или равный 3, предпочтительно, меньше или равный 2, еще более предпочтительно, меньше или равный 0,5. После подкисления раствора добавляют, по меньшей мере, один органический растворитель, и образованный раствор постоянно перемешивают, чтобы образовать водно-органическую эмульсию. Органическим растворителем предпочтительно является ксилол или толуол. Новизной настоящего изобретения является, в частности, образование водно-органической эмульсии путем добавления, по меньшей мере, одного органического растворителя в кислую композицию. Только после того, как эта эмульсия будет образована, добавляют, по меньшей мере, один ксантогенат щелочного металла формулы MeRX, где R представляет собой линейную или разветвленную алкильную группу с числом атомов углерода, больше или равным 2, Me представляет собой щелочной металл, выбранный из Li, Na, K, Rb, Cs и Fr, и X означает ксантогенатную группу. Щелочным металлом предпочтительно является Na или K. Полученная смесь должна иметь мольное отношение молибден/ксантогенат щелочного металла в диапазоне от 1/6 до 1/2, предпочтительно от 1/4 до 1/3 и должна образовывать комплекс с молибденом формулы MoRX, где Mo представляет собой молибден. Комплекс с молибденом остается в органической фазе, тем самым снижается контакт с водой и последующее разложение и выделение CS2.

На этой стадии указанную эмульсию поддерживают при кислом pH благодаря добавлению неорганической кислоты. Наконец, перемешивание прекращают, чтобы дать возможность выделению водной фазы из органической фазы, содержащей комплекс ксантогената молибдена (MoRX), которую можно напрямую использовать в реакторах каталитической гидрообработки в фазе суспензии.

Растворимость ксантогенатов молибдена формулы MoRX в органических растворителях может повышаться с длиной линейной или разветвленной алкильной группы R, где указанная группа R происходит из ксантогената щелочного металла, имеющего формулу MeRX.

Как отмечено выше, ксантогенаты щелочных металлов (MeRX), используемые в способе согласно настоящему изобретению, являются соединениями, в которых линейная или разветвленная алкильная группа R имеет число атомов углерода, больше или равное 2, более предпочтительно, больше или равное 2 и меньше или равное 12. Щелочным металлом предпочтительно является Na или K. Кроме того, линейная или разветвленная алкильная группа R предпочтительно выбрана из этила, изопропила, изобутила, амила, н-гексила, н-октила, н-децила и н-додецила. Еще более предпочтительно ксантогенаты щелочных металлов выбраны из этилксантогената калия, изопропилксантогената натрия, изобутилксантогената натрия, амилксантогената калия, гексилксантогената калия, октилксантогената калия, децилксантогената калия и додецилксантогената калия.

Для оценки растворимости соединений MoRX авторы изобретения использовали способ, который состоит в растворении ксантогената MoRX в меньшем количестве растворителя, чем максимальная растворимость. Затем органический экстракт анализировали, чтобы определить содержание Mo. Авторы протестировали соединения изобутилксантогенат натрия (Me=Na и R=IB), изопропилксантогенат натрия (Me=Na и R=IP), амилксантогенат калия (Me=K и R=A) и этилксантогенат калия (Me=K и R=E). Данные по растворимости соединений MoRX, тестированных в органическом растворителе, приведены в таблице 1.

Таблица 1
Соединение Mo/RX (моль/моль) Растворимость свежего MoRX
(% Mo)
Внешний вид осадка
MoEX 1/3 Толуол: 2,9
Газойль: <0,3
Бензин: 0,5
пластичный
вязкость средняя
твердеет через 12-24 ч
MoIBX 1/3 Толуол: 5,9
Газойль: <0,2
Бензин: 0,8
пластичный
вязкость средняя
твердеет через 24-48 ч
MoIPX 1/3 Толуол: 0,8
Газойль: <0,2
Бензин: <0,2
пластичный
вязкость высокая
твердеет через 24-48 ч
MoAX 1/3 Толуол: 5,8
Газойль: 0,2
Бензин: 2,7
LCO: 1,1
Ксилолы: 7,5
пластичный
вязкость средняя
не твердеет в пределах 20 дней

В таблице 1 показано увеличение растворимости с увеличением длины алкильной цепи R как в линейной, так и в разветвленной группе.

Изобутилксантогенат молибдена и амилксантогенат молибдена предпочтительно имеют хорошую растворимость в толуоле. Амилксантогенат молибдена, что еще более выгодно, имеет очень высокую растворимость в ксилолах. В таблице 1 показано также, что соединение MoAX предпочтительно имеет тенденцию отверждаться намного медленнее, чем другие ксантогенаты, указанные в таблице 1, тем самым позволяя иметь более высокую стабильность в течение более длительного срока хранения. Ксантогенаты щелочных металлов и их комплексные соединения, включая комплексы ксантогенатов с молибденом (MoRX), разлагаются в присутствии воды, выделяя CS2, CO2 и COS. Поэтому, вообще говоря, одной из задач настоящего изобретения является повышение стабильности соединений MoRX, особенно во всех случаях, когда требуется продолжительное хранение. Стабильность соединений MoRX может меняться с длиной алкильной цепи R, в частности, продукты-гомологи с более длинной цепью разлагаются медленнее.

Стабильность комплексных соединений MoRX анализировали путем растворения указанных соединений в толуоле, затем их нерастворимый остаток оставляли на воздухе на несколько недель. Затем сравнивали нерастворимые остатки MoRX в толуоле, результат приведен в таблице 2.

Таблица 2
Тип ксантогената Mo (%) Нерастворимый остаток в толуоле (%)
MoEX 18 1 неделя: 7,0
4 недели: 40,6
MoIBX 15,5 1 неделя: 4,0
4 недели: 14,1
MoIPX 18,2 1 неделя: 23,7
4 недели: 52,3
MoAX 15 1 неделя: 2,4
4 недели: 4,9

Как можно заключить из таблицы 2, среди линейных, а также разветвленных соединений стабильность повышается с увеличением числа атомов углерода в алкильной группе. Поэтому авторы изобретения предполагают, что чем больше число атомов углерода в алкильной группе, тем более стабильным будет соединение, и, следовательно, предпочтительными являются все ксантогенаты щелочных металлов, в которых число атомов углерода составляет от 2 до 12. Кроме того, изобутилксантогенат молибдена (MoIBX) обнаруживает хорошую стабильность и сопротивление разложению на воздухе и разложению вследствие гидролиза остаточным водным раствором.

Амилксантогенат молибдена (MoAX) неожиданно оказался наиболее стабильным и менее подверженным разложению на воздухе и разложению вследствие гидролиза остаточным водным раствором. Поэтому авторы более подробно проанализировали стабильность соединения амилксантогената молибдена, которое спонтанно разлагается в зависимости от различных условий хранения (температура, время, добавки) и образует преимущественно летучие продукты CS2, COS, диметилсульфид, этилизопентилдисульфид и 3-метил-1-бутанол. Анализ стабильности MoAX описан в примере 1, и применение способа согласно настоящему изобретению описано в примере 2.

Пример 1. Стабильность амилксантогената молибдена (MoAX) при хранении

Настоящий пример описывает рабочую методику идентификации возможной эмиссии летучих соединений вследствие разложения полученного амилксантогената молибдена. MoAX получали из одного Mo, исходя из амилксантогената калия (KAX), при мольном отношении Mo/KAX=1/3, и выделяли фильтрованием. Порции MoAX массой по 0,3 г запаивали в пузырьках и выдерживали при комнатной температуре (20°C) и при 50°C в течение разного времени. Испытания, проводимые под давлением газойля, циклогексана и с солюбилизацией ксилола, были направлены на проверку возможной абсорбции летучих продуктов, ограничивающей их эмиссию. Верхнюю газовую фазу анализировали методом ГХ/МС. Основными продуктами разложения являются CS2, COS, диметилсульфид, этилизопентилдисульфид и 3-метил-1-бутанол. На фиг.1, 2, 3, 4 и 5 показано изменение эмиссии этих веществ в зависимости от времени и условий хранения (температура и напор). Согласно фиг.1, эмиссия CS2, очевидно, существенно не усиливается с увеличением продолжительности хранения и с температурой. Давление газойля и солюбилизация в ксилоле подавляет эмиссию, даже при температуре 50°C, тогда как циклогексан, по-видимому, эффективен только при комнатной температуре.

Согласно фиг.2, концентрация COS в паре повышается со временем и в меньшей степени связана с температурой. И в этом случае подтверждается эффект присутствия давления газойля, циклогексана и солюбилизации в ксилоле. Согласно фиг.3, диметилсульфид образуется по существу только при 50°C, тогда как при всех других условиях его выделение сильно снижено.

Влияние временного параметра также кажется ограниченным. Из фиг.4 можно видеть, что этилизопентилдисульфид выделяется фактически только из образца MoAX, и выделение сильно зависит от продолжительности хранения. В остальных случаях образование сильно снижено, также при длительном времени и при высоких температурах. Как можно видеть на фиг.5, эффект давления газойля, циклогексана и ксилола значителен также для 3-метил-1-бутанола, даже при 50°C, и при длительном сроке хранения.

Пример 2. Осаждение амилксантогената молибдена в эмульсии ксилолом

Данный пример описывает осаждение амилксантогената молибдена (MoAX) в эмульсии ксилолом, чтобы установить максимальную концентрацию молибдена в органической фазе, совместимую с удовлетворительной обрабатываемостью с точки зрения прилипания осадка к стенкам реактора. Использовали 215 мл водного раствора с pH 0,5, полученного из потока, содержащего 9 г/л молибдена и 3,5 г/л ванадия, 3,2 г Na2SO3 и 35 мл H2SO 1/1. В раствор многократно добавляли ксилол, затем раствор интенсивно перемешивали при 1300 об/мин мешалкой Silverson. К водно-органической эмульсии при постоянном перемешивании добавляли 84,5 мл раствора амилксантогената калия концентрацией 300 г/л. Примерно через 1 минуту после прекращения перемешивания фазы разделялись. Погружая предметное стекло в органическую фазу, можно было визуально установить степень адгезии и, таким образом, загрязнения, вызванного MoAX на поверхности стекла. Эту последовательность повторяли со следующими добавлениями ксилола, для изменения отношения водная фаза/органическая фаза (A/O), согласно схеме, показанной в таблице 3. Как можно видеть из данных, приведенных в таблице 3, при предположении полной экстракции Mo из водной фазы, первый тест проводили с пересыщенным ксилольным раствором молибдена, так как растворимость MoAX, выраженная на Mo, составляет 7,5%.

Таблица 3
Позиция Чистое отношение A/O в KAX Mo в O (%)
1 12,3 9,3
2 8,1 6,1
3 6,4 4,8
4 5,3 4
5 3,9 2,9
6 2,1 1,6

На фиг.6 показаны предметные стекла после погружения в различные органические фазы. Улучшение течения или уменьшение загрязнения можно наблюдать, уже начиная со стекол 3-4, соответствующих отношению A/O от 6 до 5. При этих отношениях получают ксилольные растворы с расчетными концентрациями Mo в диапазоне от 4,8% до 4%.

Пример 3. Синтез изобутилксантогената молибдена MoIBX

200 мл раствора, содержащего 6 г MoO3 в сильно основной среде из-за присутствия NaOH, доводили до pH 0,5 разбавленной H2SO4 1/1. При перемешивании к раствору по каплям добавляли 72,3 мл раствора изобутилксантогената натрия концентрацией 300 г/л (мольное отношение Mo/NaIBX=1/3). В конце осаждения водный раствор имел светло-розовую окраску и становился мутным. Конечный pH раствора равен 1,4. Осадок имел пластичную консистенцию (похожую на битум).

Пример 4. Синтез изопропилксантогената молибдена MoIPX

200 мл раствора, содержащего 3 г MoO3 в сильно основной среде, доводили до pH 0,5 разбавленной H2SO4 1/1. При перемешивании к раствору по каплям добавляли 33 мл раствора изопропилксантогената натрия концентрацией 300 г/л (мольное отношение Mo/NaIPX=1/3). В конце осаждения раствор был почти бесцветным (чуть розовым) и со временем мутнел. Осадок имел консистенцию битума и высокую вязкость и стремился прилипнуть к реакционному сосуду и мешалке. В пределах 2-3 часов масса осадка, хотя и сохраняла пластичную консистенцию, становилась менее липкой.

Пример 5. Синтез амилксантогената молибдена MoAX

200 мл основного (из-за присутствия NaOH) раствора MoO3, содержащего 1% Mo, доводили до pH 0,5 разбавленной H2SO4 1/1.

К раствору добавляли 42,1 мл раствора KAX концентрацией 300 г/л (мольное отношение Mo/KAX=1/3).

И в этом случае, в конце осаждения раствор был почти бесцветным. Осадок отличался вязкой консистенцией (похожей на мед), но в присутствии водной фазы практически не обнаруживал адгезии к окружению и оседал на дно реакционного сосуда.

После удаления водной фазы осадок отличался выраженной адгезией к поверхностям, причем указанное свойство снова пропадало после повторного введения в воду.

Пример 6. Осаждение MoAX в водном растворе

Данный пример описывает осаждение амиоксантогената молибдена MoAX в 200 мл водного раствора, содержащего 9 г/л Mo и 3,5 г/л V. К раствору добавляли 3,5 г Na2SO3. Величину pH раствора доводили до 0,5, добавляя 26 мл H2SO 1/1. Осаждение MoAX осуществляли, используя водный раствор амилксантогената калия в концентрации 300 г/л. Во время титрования одновременно измеряли pH и потенциал раствора. На фиг.7 показано изменение концентрации Mo, V и потенциала раствора в ходе добавления осадителя. Можно видеть, что уже после добавления 53 мл KAX (300 г/л раствора) эффективность осаждения Mo выше 95%, тогда как почти 90% V остается в растворе. И в этом случае, эффективность осаждения Mo и селективность по V хорошие. Кривая, показывающая эволюцию потенциала, имеет изгиб в соответствии с эквивалентной точкой, и осаждение имеет место в диапазоне потенциала от 200 мВ до 150 мВ. На фиг.8 показано изменение pH во время реакции, величина которого увеличивается от начального значения 0,5 до примерно 1 в конце осаждения.


СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
СПОСОБ СЕЛЕКТИВНОГО УДАЛЕНИЯ МОЛИБДЕНА ИЗ СОДЕРЖАЩЕГО ЕГО РАСТВОРА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 26.
13.01.2017
№217.015.6d72

Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках

Настоящее изобретение относится к устройству и способу 1 для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков (С), при прохождении каждого через соответствующий основной трубопровод (2). Устройство (1) включает блок для измерения (3) для каждого...
Тип: Изобретение
Номер охранного документа: 0002597019
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.790f

Смешанные оксиды переходных металлов, полученные из них катализаторы гидроочистки и способ изготовления

Изобретение относится к смешанным оксидам, которые пригодны в качестве предшественников катализаторов гидроочистки на базе сульфидов металлов, к композициям, содержащим указанные смешанные оксиды, к сульфидным соединениям металлов, полученным сульфидированием указанных смешанных оксидов или...
Тип: Изобретение
Номер охранного документа: 0002599255
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ac7

Комплекс и способ сепарации смеси, содержащей две текучие фазы, по меньшей мере частично несмешиваемые друг с другом и имеющие различную удельную плотность, в частности, для внутрискважинного применения

Изобретение относится к области добычи углеводородов. Разделяют смесь, содержащую две текучие фазы, по меньшей мере частично несмешиваемые друг с другом и с различной удельной плотностью. Вводят указанную смесь в комплекс 10 для сепарации и подвергают ее первой грубой стадии сепарации при...
Тип: Изобретение
Номер охранного документа: 0002600653
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.af8a

Способ прекращения или по меньшей мере сокращения неконтролируемого выделения углеводородов, фонтанирования из буровой скважины для извлечения углеводородов

Группа изобретений относится к способу прекращения или по меньшей мере сокращения неконтролируемого выделения углеводородов, фонтанирования из буровой скважины для добычи углеводородов. Способ включает введение высокоплотных твердых элементов засыпки у забоя скважины, через подходящий...
Тип: Изобретение
Номер охранного документа: 0002611085
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.bb2d

Каталитическая система и способ полной гидропереработки тяжелых нефтей

Изобретение относится к каталитической системе и способу полной гидропереработки тяжелых нефтей. Каталитическая система включает в себя: первый катализатор, имеющий функцию гидрирования, состоящий из твердых частиц, из которых по меньшей мере 95% по объему имеют эквивалентный диаметр меньше чем...
Тип: Изобретение
Номер охранного документа: 0002615766
Дата охранного документа: 11.04.2017
10.05.2018
№218.016.3a9a

Впрыск добавки в установку синтеза углеводородов из синтез-газа, позволяющий контролировать и поддерживать равномерную концентрацию катализатора

Изобретение относится к способу синтеза углеводородов из сырья, содержащего синтез-газ, в котором применяют твердый катализатор Фишера-Тропша в трехфазной реакционной секции, выполненной таким образом, что упомянутый катализатор поддерживается в суспензии в жидкой фазе за счет циркуляции...
Тип: Изобретение
Номер охранного документа: 0002647580
Дата охранного документа: 16.03.2018
09.06.2018
№218.016.5d64

Многоструктурный реактор, изготовленный из монолитных смежных теплопроводящих тел, для химических процессов с высоким теплообменом

Изобретение относится к многоструктурному трубчатому элементу для проведения экзотермических/эндотермических химических реакций, способу изготовления такого элемента и реактору, содержащему такой элемент. Элемент включает два или более монолитных теплопроводящих тел, расположенных продольно и...
Тип: Изобретение
Номер охранного документа: 0002656482
Дата охранного документа: 05.06.2018
15.11.2018
№218.016.9dc7

Гидрированные полимеры с радиальной структурой, имеющие ядро на основе каликсаренов, и их применение в смазочных композициях

Изобретение относится к гидрированным полимерам с радиальной структурой, имеющим ядро, полученное из каликсаренов, и может быть применено в смазочных маслах в качестве присадок, улучшающих индекс вязкости. Получают гидрированные полимеры радиальной структуры, имеющие ядро из каликсаренов общей...
Тип: Изобретение
Номер охранного документа: 0002672421
Дата охранного документа: 14.11.2018
20.03.2019
№219.016.e5d9

Катализатор на основе кобальта для синтеза фишера-тропша

Настоящее изобретение относится к катализатору на основе кобальта для синтеза Фишера-Тропша и к способу синтеза Фишера-Тропша из смеси моноксида углерода и водорода с его использованием. Описан катализатор, применимый для процесса конверсии синтез-газа, причем указанный катализатор содержит: а)...
Тип: Изобретение
Номер охранного документа: 0002383388
Дата охранного документа: 10.03.2010
29.03.2019
№219.016.f8b7

Способ активирования титансодержащего силикалита, титансодержащий силикалитный катализатор и способ окисления органического субстрата

Описывается способ активирования титансодержащего силикалита общей формулы (I) xTiO•(1-x)SiO, где х = 0,0001 - 0,04, который включает активирование катализатора (I) пероксидом водорода в водной среде в присутствии предшественников фторидных ионов или фторсодержащих анионов. Описывается также...
Тип: Изобретение
Номер охранного документа: 02159675
Дата охранного документа: 27.11.2000
Показаны записи 11-15 из 15.
13.01.2017
№217.015.6d72

Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках

Настоящее изобретение относится к устройству и способу 1 для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков (С), при прохождении каждого через соответствующий основной трубопровод (2). Устройство (1) включает блок для измерения (3) для каждого...
Тип: Изобретение
Номер охранного документа: 0002597019
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.790f

Смешанные оксиды переходных металлов, полученные из них катализаторы гидроочистки и способ изготовления

Изобретение относится к смешанным оксидам, которые пригодны в качестве предшественников катализаторов гидроочистки на базе сульфидов металлов, к композициям, содержащим указанные смешанные оксиды, к сульфидным соединениям металлов, полученным сульфидированием указанных смешанных оксидов или...
Тип: Изобретение
Номер охранного документа: 0002599255
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7ac7

Комплекс и способ сепарации смеси, содержащей две текучие фазы, по меньшей мере частично несмешиваемые друг с другом и имеющие различную удельную плотность, в частности, для внутрискважинного применения

Изобретение относится к области добычи углеводородов. Разделяют смесь, содержащую две текучие фазы, по меньшей мере частично несмешиваемые друг с другом и с различной удельной плотностью. Вводят указанную смесь в комплекс 10 для сепарации и подвергают ее первой грубой стадии сепарации при...
Тип: Изобретение
Номер охранного документа: 0002600653
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.af8a

Способ прекращения или по меньшей мере сокращения неконтролируемого выделения углеводородов, фонтанирования из буровой скважины для извлечения углеводородов

Группа изобретений относится к способу прекращения или по меньшей мере сокращения неконтролируемого выделения углеводородов, фонтанирования из буровой скважины для добычи углеводородов. Способ включает введение высокоплотных твердых элементов засыпки у забоя скважины, через подходящий...
Тип: Изобретение
Номер охранного документа: 0002611085
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.bb2d

Каталитическая система и способ полной гидропереработки тяжелых нефтей

Изобретение относится к каталитической системе и способу полной гидропереработки тяжелых нефтей. Каталитическая система включает в себя: первый катализатор, имеющий функцию гидрирования, состоящий из твердых частиц, из которых по меньшей мере 95% по объему имеют эквивалентный диаметр меньше чем...
Тип: Изобретение
Номер охранного документа: 0002615766
Дата охранного документа: 11.04.2017
+ добавить свой РИД