×
10.06.2015
216.013.536b

Результат интеллектуальной деятельности: ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицинской технике, а именно к устройствам для измерения биоэлектрических потенциалов сердца. Электрокардиограф содержит блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь. Электрокардиограф имеет многоканальную структуру и содержит несколько идентичных каналов. В качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки. Выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей. Изобретение направлено на повышение разрешающей способности электрокардиографической аппаратуры для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени без применения как аналоговых, так и программных фильтров, накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью ранней диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности. 20 ил.
Основные результаты: Электрокардиограф для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени, содержащий блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь, отличающийся тем, что имеет многоканальную структуру и содержит несколько идентичных каналов, в качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки, выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей.

Изобретение относится к медицинской технике, а именно к устройствам для измерения биоэлектрических потенциалов, используемых преимущественно в приборах медицинской диагностики.

Известно устройство [Куриков С.Ф., Прилуцкий Д.А., Селищев С.В. Применение сигма-дельта-аналого-цифрового преобразования в многоканальных электрокардиографах uran.donetsk.ua>~masters…fkita/pichka/librar], в котором применяются дельта-сигма аналого-цифровые фильтры (АЦП), при этом во входных цепях не применяются традиционные фильтры - заграждающий 50 Гц, антитреморный, фильтр высокой частоты и фильтр низкой частоты. Постоянная составляющая на входе ЭКГ компенсируется за счет 5-6 дополнительных бит сигма-дельта-АЦП. Недостатком данного устройства является использование программных фильтров, выполненных на компьютере, для улучшения отношения сигнал/шум с целью повышения разрешающей способности измерительных каналов, которые приводят к искажению тонкой структуры биопотенциала. Достигнуты следующие технические параметры:

- диапазон входных напряжений от 1,2 мкВ; 5 мкВ; 10 мкВ до 10 мВ;

- диапазоны частот - (0-40)/(0-146) Гц;

- частота квантования - 2000 Гц.

Известно электродное устройство [SU 2469642, МПК A61B, опубл. 20.12.2012 г. Бюл. №35], содержащее диэлектрический корпус, в котором расположен диэлектрический пористый контактный элемент, на нерабочей стороне которого выполнено углубление с нанесенным на его поверхность слоем серебра, соединенным с отводящим элементом спаем, причем для насыщения диэлектрического пористого контактного элемента использован электролит, отличающееся тем, что весь объем пор диэлектрического пористого контактного элемента заполнен наночастицами серебра, покрытыми хлоридом серебра, и пропитан электролитом, при этом слой серебра через токоотводящий серебряный элемент с помощью спая электрически связан с проводником, подключенным к входу электрографического прибора, а на нерабочую сторону контактного элемента нанесен герметик, покрывающий углубление и место спая.

Электродное устройство по п.1, отличающееся тем, что в качестве электролита выбран состав, мас.%:

вода 31-35
хлористый калий 10-13
агар-агар 2-3
полиакриламид 0,5-0,8
глицерин остальное

Метрологические и эксплуатационные параметры медицинских наноэлектродов превышают параметры всех известных в мире медицинских электродов.

Известно устройство [SU 2240720, МПК A61B 5/04, опубл. 27.11.2004 г. Бюл. №48], выбранное в качестве прототипа, содержащее блок питания, два электрода и последовательно соединенные процессор, блок оптронной развязки и компьютер, оно дополнительно содержит еще два электрода, конвертер питания, коммутатор (блок компенсации потенциала смещения между электродами) и аналого-цифровой преобразователь (АЦП), выход которого соединен с первым входом процессора, второй вход которого соединен со вторым выходом блока оптронной развязки. Выходы блока питания через конвертер питания подключены к питающим входам коммутатора, блока компенсации потенциала смещения между электродами, АЦП, процессора, блока оптронной развязки и компьютера, выход которого через блок оптронной развязки соединен со вторым входом процессора, третий выход которого соединен с третьим входом блока компенсации потенциала смещения между электродами, а четвертый выход соединен с пятым входом коммутатора, первый, второй, третий и четвертый входы которого соединены с одним из четырех электродов, а каждый выход соединен с соответствующим входом блока компенсации потенциала смещения между электродами.

В качестве электродов в данном устройстве использованы серийно изготавливаемые стеклянные электроды, например ЭВЛ-1МЗ. Наиболее эффективно настоящее изобретение может быть использовано для проведения обследования (скрининга) населения с целью выявления патологии внутренних органов на ранних стадиях заболевания.

Диапазон измерения величины снимаемого биопотенциала, обеспечиваемый устройством, находится в пределах от 0,1 мВ до 200 мВ.

Недостатками данного устройства является низкая разрешающая способность (0,1 мВ), в устройстве применяются стеклянные образцовые электроды сравнения ЭВЛ-1М3, которые не приспособлены для крепления на теле человека и являются неударопрочными, наличие программных фильтров на процессоре, которые приводят к искажению регистрируемого биопотенциала, то есть искажают его тонкую структуру.

Задачей предлагаемого изобретения является повышение разрешающей способности электрокардиографа высокого разрешения для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени без применения как аналоговых, так и программных фильтров, без накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью ранней диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности (ВСС).

Поставленная задача решена за счет того, что устройство, так же как в прототипе, содержит блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь, блок компенсации постоянной составляющей.

Согласно изобретению устройство имеет многоканальную структуру и содержит несколько идентичных каналов, в устройстве в качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки, выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей.

Медицинские наноэлектроды благодаря высоким метрологическим параметрам и особому строению внутренней структуры позволяют регистрировать не инвазивно микропотенциалы на электрокардиограмме в реальном масштабе времени без применения стандартных как аналоговых, так и программных фильтров, накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности (ВСС).

Предлагаемая структура устройства обеспечивает высокое качество передачи биопотенциалов с наноэлектродов в компьютер:

1. В структуре устройства отсутствует коммутатор, который вносит коммутационные помехи в известном устройстве.

2. В устройстве используются высокоразрядные АЦП и ЦАП.

3. В качестве АЦП применяется малошумящий сигма-дельта-АЦП (не менее 24 разряда).

4. Микроконтроллер организует обмен с компьютером и управляет ЦАПом для компенсации постоянной составляющей на входе.

5. Устройство изоляции сигнала обеспечивает защиту от поражения электрическим током.

6. Зарегистрированные электрокардиограммы в компьютере запоминаются, вычисляются амплитудно-временные параметры зубцов ЭКГ и пиков на зубцах, автоматически выдается рекомендация по состоянию сердечно-сосудистой системы для врача, который устанавливает окончательный диагноз.

7. Питание устройства осуществляется от аккумуляторных батарей.

Данное устройство позволило зарегистрировать не инвазивно низкоамплитудные зубцы электрокардиографического сигнала и пики на них уровнем 1 мкВ, единицы и десятки микровольт без применения традиционных как аналоговых, так и программных фильтров, которые вносят амплитудные и фазовые искажения, то есть зарегистрировать не инвазивно истинную биоэлектрическую активность сердца без искажения формы низкоамплитудных зубцов.

На фиг. 1 представлена структура устройства.

На фиг. 2 представлены фрагменты ЭКГ, зарегистрированные одновременно: а, в - в диапазоне частот 0-1000 Гц; б, г - в диапазоне частот 0-150 Гц; а, б - район зубцов P,Q; в, г - R-зубец.

На фиг. 3 представлены фрагменты ЭКГ, зарегистрированные одновременно: а,в - в диапазоне частот 0-1000 Гц; б, г - в диапазоне частот 0-150 Гц; а, б - зубец Р; в, г - зубцы P, Q, S, T, U.

На фиг. 4 представлен фрагмент ЭКГ пациента 44, 2 - отведение по Холтеру.

На фиг. 5 представлен фрагмент ЭКГ пациента 45, 3 - отведение по Холтеру.

На фиг. 6 представлен фрагмент ЭКГ пациента 47, 2 - отведение по Холтеру.

На фиг. 7 представлен фрагмент ЭКГ пациента 48, 2 - отведение по Холтеру.

На фиг. 8 представлены фрагменты ЭКГ по Холтеру пациента 50: а - 1 отведение; б, в - 3 отведение; г - общий вид, 1 отведение.

На фиг. 9 представлен фрагмент ЭКГ пациента 51, 2 отведение по Холтеру.

На фиг. 10 представлены фрагменты ЭКГ по Холтеру пациента 52: а - 1 отведение; 6-2 отведение.

На фиг. 11 представлены фрагменты ЭКГ по Холтеру пациента 53: а - 1 отведение; 6-2 отведение; в - 3 отведение.

На фиг.12 представлены фрагменты ЭКГ по Холтеру пациента 54: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.13 представлены фрагменты ЭКГ по Холтеру пациента 55: а - 1 отведение; б - 2 отведение.

На фиг.14 представлен фрагмент ЭКГ пациента 56, 1 отведение.

На фиг.15 представлены фрагменты ЭКГ по Холтеру пациента 57: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.16 представлены фрагменты ЭКГ по Холтеру пациента 58: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.17 представлен фрагмент ЭКГ пациента 59, 1 отведение по Холтеру.

На фиг.18 представлен фрагмент ЭКГ пациента 60, 1 отведение по Холтеру.

На фиг.19 представлены фрагменты ЭКГ по Холтеру пациента 61: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.20 представлены фрагменты ЭКГ по Холтеру пациента 62: а - 1 отведение; б - 2 отведение.

Электрокардиограф высокого разрешения для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени (фиг.1) содержит медицинские наноэлектроды 11i и 12i, измерительные усилители 2i, операционные усилители 3i, аналого-цифровые преобразователи 4i, микроконтроллер 5, цифроаналоговый преобразователь 6i, изолятор 7, персональный компьютер 8.

Принцип действия устройства заключается в следующем.

Медицинские наноэлектроды 11i и 12i устанавливают на грудной клетке пациента. Электрокардиографические сигналы с наноэлектродов поступают на инвертирующий и неинвертирующий входы измерительных усилителей 2i, с выхода измерительных усилителей сигналы поступают на неинвертирущий вход операционного усилителя 3i, сигналы с выхода операционных усилителей поступают на вход аналого-цифрового преобразователя 4i и после оцифровки поступают на вход микроконтроллера 5, который оценивает входной сигнал и при наличии постоянной составляющей выдает сигнал на ЦАП 6i для устранения постоянного сигнала на входе путем подачи компенсирующего напряжения на инвертирующий вход операционных усилителей 3i. Изолятор 7 изолирует пациента от компьютера 8. Сигналы на вход компьютера поступают через порт USB.

Были проведены клинические исследования электрокардиографа высокого разрешения для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени.

Результаты клинических исследований получены в Томском НИИ кардиологии. Зарегистрированы одновременно электрокардиограммы пациента П1 в области частот от 0 до 1000 Гц, фиг. 2 а, в, и в области частот от 0 до 150 Гц, фиг. 2 б, г, а, б - район зубцов P, Q; в, г - R-зубец. В устройствах для регистрации отсутствуют фильтры, съем осуществляется с грудной клетки по Холтеру. Устройства не были синхронизированы и поэтому наблюдается небольшая временная задержка. Устройство с полосой пропускания от 0 до 150 Гц сглаживает пики в отличие от высокочастотного устройства.

Электрокардиограммы пациента 2, зарегистрированные одновременно теми же устройствами, представлены на фиг. 3 а, б, в, г., а, в - диапазон частот 0-1000 Гц; б, г - диапазон частот 0-150 Гц; а, б - зубец Р; в, г - зубцы P, Q, S, T, U.

На электрокардиограммах, фиг. 2 а, в и фиг. 3 а, в, зарегистрированных в полосе частот от 0 до 1000 Гц, пики микровольтового уровня на стандартных зубцах и их положение на временной оси ЭКГ более отчетливо фиксируются.

Для оценки возможности регистрации микропотенциалов на электрокардиограмме уровнем 1 мкВ, единицы и десятки микровольт с помощью аппаратуры на наноэлектродах в диапазоне частот от 0 до 150 Гц без аналоговых и программных фильтров и накопления кардиоимпульсов представлены результаты клинических исследований, фиг. 4 - 20. Все пациенты перенесли инфаркт миокарда и наблюдались в отделении неотложной кардиологии Томского НИИ кардиологии.

На фиг. 4 у пациента 44 во 2 отведении по Холтеру амплитуда Р-зубца 60 мкВ, пиков - от 3 мкВ до 30 мкВ.

На фиг. 5 у пациента 45 в 3 отведении по Холтеру амплитуда Р-зубца 30 мкВ, пиков - от 5 мкВ до 20 мкВ.

На фиг. 6 у пациента 47 во 2 отведении по Холтеру амплитуда Р-зубца 50 мкВ, пиков - от 10 мкВ до 70 мкВ.

На фиг. 7 у пациента 48, 2 отведение, амплитуда Р-зубца 25 мкВ, пиков - от 8 мкВ до 15 мкВ.

На фиг. 8 у пациента 50 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 25 мкВ, пиков - от 4 до 5 мкВ, фиг. 8а; в 3 отведении амплитуда Р-зубца от 7 мкВ до 15 мкВ, пиков - от 7 мкВ до 15 мкВ, фиг. 8б, в; общий вид ЭКГ в 1 отведении представлен на фиг. 8 г.

На фиг. 9 у пациента 51 во 2 отведении по Холтеру амплитуда Р-зубца 55 мкВ, пиков - от 3 мкВ до 33 мкВ.

На фиг. 10 у пациента 52 при исследовании по Холтеру в 1 отведении наблюдается изменение полярности Р-зубца перед экстрасистолой, зубец двухполярный, амплитуда Р-зубца 20 мкВ, пиков - от 5 мкВ до 10 мкВ; во 2 отведении амплитуда Р-зубца 15 мкВ, зубец двухполярный, пики - от 5 мкВ до 10 мкВ.

На фиг. 11 у пациента 53 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 35 мкВ, пиков - от 3 до 10 мкВ; во 2 отведении амплитуда Р-зубца 45 мкВ, пиков - от 3 до 5 мкВ; в 3 отведении амплитуда Р-зубца 15 мкВ, пиков - от 2 до 7 мкВ.

На фиг. 12 у пациента 54 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 5 мкВ, пиков - от 5 до 10 мкВ; во 2 отведении амплитуда Р-зубца 8 мкВ, пиков - ±4 мкВ; в 3 отведении амплитуда Р-зубца 7-8 мкВ, пиков - от 2,5 до 5 мкВ.

На фиг. 13 у пациента 55 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 100 мкВ, пиков - от 8 до 70 мкВ; во 2 отведении амплитуда Р-зубца 40 мкВ, зубец двухполярный, амплитуды пиков - от 20 мкВ до ±40 мкВ.

На фиг. 14 у пациента 56 в 1 отведении по Холтеру амплитуда Р-зубца 180 мкВ, пика - 80 мкВ.

На фиг. 15 у пациента 57 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 100 мкВ, пиков - от 8 мкВ до 60 мкВ; во 2 отведении амплитуда Р-зубца 70 мкВ, амплитуды пиков - от 10 мкВ до 25 мкВ; в 3 отведении амплитуда Р-зубца 50 мкВ, пиков - от 10 мкВ до 15 мкВ.

На фиг. 16 у пациента 58 при исследовании сердца по Холтеру в 1 отведении амплитуда Р-зубца 170 мкВ, пиков - от 10 мкВ до 25 мкВ; во 2 отведении амплитуда Р-зубца 110 мкВ, амплитуды пиков - от 10 мкВ до 20 мкВ; в 3 отведении амплитуда Р-зубца 80 мкВ, пиков - от 10 мкВ до 25 мкВ.

На фиг. 17 у пациента 59 в 1 отведении по Холтеру, амплитуда Р-зубца 120 мкВ, пиков - от 6 мкВ до 40 мкВ.

На фиг. 18 у пациента 60 в 1 отведении по Холтеру амплитуда Р-зубца 175 мкВ, пиков - от 6 мкВ до 75 мкВ.

На фиг. 19 у пациента 61 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 150 мкВ, пиков - от 10 мкВ до 20 мкВ; во 2 отведении амплитуда Р-зубца 75 мкВ, амплитуды пиков - от 5 мкВ до 45 мкВ; в 3 отведении амплитуда Р-зубца 45 мкВ, пиков - от 7 мкВ до 35 мкВ.

На фиг.20 у пациента 62 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 175 мкВ, пиков - от 5 мкВ до 50 мкВ; во 2 отведении амплитуда Р-зубца 100 мкВ, амплитуды пиков - от 5 мкВ до 50 мкВ.

На основании проведенных исследований можно сделать следующие выводы:

1. Разработанная аппаратура позволяет измерить амплитуду и момент появления на обычной ЭКГ низкоамплитудных зубцов и пиков на них.

2. Амплитуды зубцов и пиков варьируют от единиц до сотен микровольт.

3. С расширением полосы частот аппаратуры до 1000 Гц улучшается качество регистрации сигналов, составляющих единицы и десятки микровольт.

Низкоамплитудные биопотенциалы сердца микровольтового уровня зарегистрированы в реальном времени без искажений с грудной клетки пациентов со стандартных отведений по Холтеру без фильтров как аналоговых, так и программных.

Данный подход позволит дополнить существующую ЭКГ-диагностику, применяемую широко в поликлиниках, диагностическими параметрами, которые применяются для постановки точного диагноза при использовании электрокардиографов высокого разрешения, например, по методу Симсона. Метод Симсона основан на накоплении 100-300 кардиокомплексов, с дальнейшей фильтрацией суммарного импульса.

На суммарном кардиоимпульсе при определенных патологиях обнаруживают поздние потенциалы предсердий (ППП) уровнем менее 5 мкВ, которые возникают в конце P-зубца или поздние потенциалы желудочков (ППЖ) уровнем менее 20 мкВ, которые возникают после S-зубца в начале S-T-комплекса. Обнаружение на кардиоимпульсе ППП и ППЖ является предвестником внезапной сердечной смерти по данным клинических исследований методом Симсона.

Недостатками метода Симсона является невозможность анализа сигнала ЭКГ в реальном масштабе времени и включение в решающее правило параметров, имеющих отдаленное отношение к природе исследуемых низкоамплитудных составляющих ЭКГ.

Наши клинические исследования на предлагаемом устройстве показали, что устройство способно измерять низкоамплитудные флуктуации на кардиоимпульсе уровнем 1 мкВ, единицы микровольт, десятки микровольт в реальном масштабе времени без применения фильтров, которые приводят к амплитудным и фазовым искажениям ЭКГ-сигнала. На графиках хорошо просматривается нестабильность работы сердца. Доказательством отсутствия электромиографической помехи является тот факт, что низкоамплитудные флуктуации, наблюдаемые на горизонтальных участках ЭКГ, то есть во время отдыха сердца, в момент возбуждения на P-зубцах отсутствуют, что свидетельствует об изменении физиологического состояния мышечного волокна сердца в переходе от фазы покоя к фазе возбуждения.

Данное устройство открывает новые перспективы для более точной и ранней диагностики заболеваний сердца при массовых исследованиях в поликлинических условиях с целью исключения внезапной сердечной смертности (ВСС).

Электрокардиограф для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени, содержащий блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь, отличающийся тем, что имеет многоканальную структуру и содержит несколько идентичных каналов, в качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки, выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей.
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
ЭЛЕКТРОКАРДИОГРАФ ДЛЯ НЕИНВАЗИВНОЙ РЕГИСТРАЦИИ МИКРОПОТЕНЦИАЛОВ НА ЭЛЕКТРОКАРДИОГРАММЕ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 144.
10.05.2014
№216.012.c128

Способ иммобилизации биомолекул на поверхности магнитоуправляемых наночастиц железа покрытых углеродной оболочкой

Изобретение относится к cпособу иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой. Способ включает взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических...
Тип: Изобретение
Номер охранного документа: 0002515197
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c311

Интерференционный переключатель резонансного свч компрессора

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной...
Тип: Изобретение
Номер охранного документа: 0002515696
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c465

Устройство для измерения температуры

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации...
Тип: Изобретение
Номер охранного документа: 0002516036
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c637

Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции. Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц содержит охлаждаемый катод 1 в виде...
Тип: Изобретение
Номер охранного документа: 0002516502
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7de

Способ оценки эффективности стимуляции антиоксидантной активности

Изобретение относится к медицине и описывает способ оценки эффективности стимуляции антиоксидантной активности путем определения концентрации восстановленного глутатиона, при этом дополнительно в инкубационную среду добавляют 1,4-дитиоэритритол и аскорбиновую кислоту и при увеличении уровня...
Тип: Изобретение
Номер охранного документа: 0002516925
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c858

Способ прогнозирования течения липидемии

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии для прогнозирования течения липидемии. Способ включает исследование сыворотки крови до и после лечения, где дополнительно перед исследованием проводят трехкратное замораживание и оттаивание сыворотки...
Тип: Изобретение
Номер охранного документа: 0002517054
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d280

Комплексный препарат для профилактики и лечения кишечных инфекций

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных. В комплексном препарате, содержащем носитель, представляющем собой энтеросорбент,...
Тип: Изобретение
Номер охранного документа: 0002519659
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d8b5

Способ подземной газификации

Изобретение относится к горному делу и может быть применено для получения газообразного энергоносителя из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение...
Тип: Изобретение
Номер охранного документа: 0002521255
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8f8

Способ оценки прогрессирования атерогенности при ишемической болезни сердца

Изобретение относится к области медицины и предназначено для оценки прогрессирования атерогенности при ишемической болезни сердца. Перед исследованием проводят трехкратное замораживание и оттаивание сыворотки по 20 и 10 минут соответственно, дезинтеграцию, перемешивание смеси при частоте 120...
Тип: Изобретение
Номер охранного документа: 0002521322
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.ddef

Способ получения нитрида циркония

Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза...
Тип: Изобретение
Номер охранного документа: 0002522601
Дата охранного документа: 20.07.2014
Показаны записи 21-30 из 236.
27.05.2013
№216.012.45b5

Устройство управления асинхронным двигателем

Изобретение относится к области электротехники. Технический результат заключается в повышении управления электродвигателем. Для этого заявленное устройство содержит автономный инвертор напряжения, силовые выходы которого через датчики токов подключены к статорным обмоткам асинхронного...
Тип: Изобретение
Номер охранного документа: 0002483422
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.47f1

Способ управления перемещением грузов и устройство для его реализации

Изобретение относится к области транспортирования и предназначено для перемещения грузов. Устройство перемещения грузов содержит привод (1) вертикального перемещения, соединенный с грузом (5) тросом (6), датчики (8, 9) отклонения троса (6) от вертикали, датчик (7) натяжения троса (6), приводы...
Тип: Изобретение
Номер охранного документа: 0002483997
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4811

Сырьевая смесь для изготовления пеностекла

Изобретение относится к области производства теплоизоляционного пеностекла. Технический результат изобретения заключается в повышении прочности пеностекла, расширении сырьевой базы и снижении энергетических затрат при осуществлении технологического процесса. Сырьевая смесь для изготовления...
Тип: Изобретение
Номер охранного документа: 0002484029
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4871

Способ изготовления топливных брикетов из биомассы

Изобретение относится к способу получения топливных брикетов из биомассы, включающему термическую обработку биомассы при температуре 200-500°C без доступа воздуха, подготовку связующего вещества, получаемого растворением декстрина в пиролизном конденсате в соотношении 1:(5÷20), смешивание...
Тип: Изобретение
Номер охранного документа: 0002484125
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c9b

Способ извлечения урана из руд

Изобретение относится к гидрометаллургии урана и может быть использовано для извлечения урана из руд. Способ включает выщелачивание урана и железа раствором серной кислоты с использованием в качестве окислителя трехвалентного железа, содержащегося в руде. После выщелачивания ведут извлечение...
Тип: Изобретение
Номер охранного документа: 0002485193
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fd9

Способ получения наночастиц свинца

Изобретение относится к способу получения наночастиц свинца. Способ включает получение раствора стеарата свинца в н-октаноле с последующим его кипячением при 195°C. После чего раствор охлаждают и путем декантации или фильтрации отделяют от него непрореагировавший стеарат свинца и продукты его...
Тип: Изобретение
Номер охранного документа: 0002486034
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.505f

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к способу управления активностью катализатора процесса дегидрирования высших н-парафинов. Способ включает регулирование активности катализатора за счет увеличения подачи воды в реактор и характеризуется тем, что расход воды дополнительно корректируют в зависимости от типа...
Тип: Изобретение
Номер охранного документа: 0002486168
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51ab

Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов осмия. Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье заключается в том, что осмий (VIII)...
Тип: Изобретение
Номер охранного документа: 0002486500
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5238

Способ формирования субнаносекундных свч импульсов и устройство для его осуществления

Изобретение относится к области радиотехники и предназначено для формирования серии мощных СВЧ импульсов субнаносекундной длительности с высокой частотой следования в пределах входного микросекундного СВЧ импульса, генерируемого в частотно-периодическом режиме. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002486641
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.554c

Сверхпроводящий размыкатель

Изобретение относится к электротехнике, в частности к сверхпроводящим размыкателям постоянного тока многократного действия. Размыкатель содержит отключающий элемент (1), выполненный в виде двух последовательно соединенных проводников (2, 3) из сверхпроводящего материала, к выводам которых...
Тип: Изобретение
Номер охранного документа: 0002487439
Дата охранного документа: 10.07.2013
+ добавить свой РИД