×
10.06.2015
216.013.51c5

Результат интеллектуальной деятельности: СПОСОБ СИНТЕЗА МЕТАЛЛОУГЛЕРОДНОГО НАНОКОМПОЗИТА FeCo/C

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и нанотехнологии. Сначала готовят раствор полиакрилонитрила (ПАН) и ацетилацетоната Fe(CHCOCH=C(CH)O)·6HO в диметилформамиде при температуре 40°C. Вводят раствор ацетата кобальта Со(СНСОО)·4HO в диметилформамиде. Концентрация ПАН составляет 5% от массы диметилформамида, железа 5÷20% и кобальта 5÷20% от массы ПАН. Выдерживают раствор до полного растворения всех компонентов, после чего удаляют диметилформамид путем выпаривания при температуре не более 70°C. Полученный твердый остаток нагревают посредством высокоинтенсивного инфракрасного излучения путём выдержки по 15 мин при температуре 150°C и 200°C, затем 10 минут при финальной температуре 600÷800°C. Нагревание твёрдого остатка на всех этапах ведут со скоростью 20°C/мин при давлении в реакционной камере 10÷10 мм рт. ст. Полученный металлоуглеродный нанокомпозит FeCo/C содержит наночастицы FeCo с размером 5-50 нм. Исключается необходимость использования дополнительных восстановительных агентов. 1 табл., 3 ил., 3 пр.
Основные результаты: Способ синтеза металлоуглеродного нанокомпозита, включающий ряд последовательных стадий, а именно приготовления совместного раствора полиакрилонитрила (ПАН) и ацетилацетоната Fe(CHCOCH=C(CH)O)·6HO в диметилформамиде, выдержки до полного растворения всех компонентов, удаления диметилформамида путем выпаривания, нагревания полученного твердого остатка посредством высокоинтенсивного инфракрасного излучения, отличающийся тем, что приготовление указанного совместного раствора осуществляют при температуре 40°C, дополнительно вводя раствор ацетата кобальта Со(СНСОО)·4HO в диметилформамиде, при этом концентрация ПАН составляет 5% от массы диметилформамида, концентрация железа 5÷20% и кобальта 5÷20% от массы ПАН, удаление диметилформамида проводят при температуре не более 70°C, а твердый остаток нагревают на всех этапах со скоростью 20°C/мин при давлении в реакционной камере 10÷10 мм рт. ст., выдерживают по 15 мин при температуре 150°C и 200°C, а выдержку при финальной температуре 600÷800°C проводят в течение 10 минут с получением целевого продукта - металлоуглеродного нанокомпозита FeCo/C, содержащего наночастицы FeCo с размером от 5 до 50 нм.

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава) в составе нанокомпозитов FeCo/C.

Способ синтеза металлоуглеродных нанокомпозитов на основе полимеров (ПАН) и различных соединений металлов позволяет без использования сложного технологического оборудования получать многофункциональные материалы, при этом возможно достаточно простое управление электрофизическими, физико-химическими, магнитными свойствами получаемых материалов.

Известно в настоящее время несколько способов синтеза наночастиц Fe-Co-сплавов. В работе [Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li. Synthesis and microwave absorption properties of FeCo nanoplates // Journal of Alloys and Compounds. 2010. V. 493. P. 549-552] предложена методика синтеза наноразмерных пластин, содержащих сплав FeCo. Нанопластины получают с помощью восстановления в гидразин-гидрате N2H4·H2O в присутствии NaOH солей FeSO4·7H2O и CoCl2·6H2O, предварительно растворенных в дистиллированной воде. Наряду с преимуществами (простота метода синтеза и несложное аппаратурное оформление процессов) метод обладает и рядом существенных недостатков. Так, в полученных наноматериалах присутствует значительное количество окисных форм металла, что требует проведения в дальнейшем процесса восстановления, причем наночастицы металла будут за счет процессов агломерации существенно увеличиваться в размерах.

Методика [М. Hesani, A. Yazdani, В. Abedi Ravan, М. Ghazanfari The effect of particle size on the characteristics of FeCo nanoparticles // Solid State Communications. 2010. V. 150. P. 594-597] позволяет синтезировать наночастицы сплава FeCo очень малых размеров из совместного раствора FeCl3·6H2O и CoCl2·6H2O в воде, но с использованием сложной восстановительной системы, включающей Na2BO4. К недостаткам метода следует отнести то, что полученные наночастицы требуют дальнейшей стабилизации путем покрытия их различными поверхностно-активными веществами с целью изолирования наночастиц как от воздействия кислорода воздуха, так и для создания препятствия процессам агломерации.

С другой стороны, в методике [Chen Wang, Ruitao Lv, Zhenghong Huang, Feiyu Kang, Jialin Gu. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites // Journal of Alloys and Compounds. 2011. V. 509. P. 494-498] рассматривается один из вариантов синтеза металлоуглеродного нанокомпозита на основе терморасширенного графита, включающего наночастицы сплава на развитой поверхности. Нанокомпозит получают путем процессов эксфолиации графита под действием ультразвука в присутствии FeSO4 и CoSO4. При этом к недостаткам метода стоит отнести необходимость измельчения графита, использование мощного ультразвукового оборудования для процессов эксфолиации графита, использование смеси концентрированных азотной и серной кислоты, нагрев до существенных температур (порядка 600°C), сложность контроля размера и фазового состава наночастиц.

Наиболее близким аналогом является способ, описанный в патенте RU N2492923 от 20.09.2013.

Отличительной особенностью предлагаемого нами способа от указанного выше является возможность синтеза наночастиц сплава FeCo в составе нанокомпозита при температурах ниже температуры плавления металлов, при этом процесс проводится в вакууме.

В настоящем изобретении техническим результатом является получение металлоуглеродных нанокомпозитов FeCo/C, содержащих наночастицы FeCo с размером от 5 до 50 нм, при ИК-нагреве композита Соац·4H2O/Feац.ац·6H2O/ПАН. При этом процесс восстановления обходится без использования каких-либо дополнительных внешних восстановительных агентов, а размером наночастиц можно управлять, изменяя условия проведения процесса синтеза (температура, концентрация металла).

Способ синтеза нанокомпозита включает в себя стадии приготовления совместного раствора полиакрилонитрила (ПАН) с молекулярным весом 1,5·105÷2·105, ацетата кобальта (Со(СН3СОО)2·4H2O) и ацетилацетоната железа (Fe(CH3COCH=C(CH3)O)3 6H2O) в диметилформамиде (ДМФА) в следующих соотношениях: концентрация ПАН составляет 5% от массы растворителя, концентрация железа 5÷20% и кобальта 5÷20% от массы ПАН, выдержку в течение 8 часов при температуре 40°C до полного растворения Соац·4H2O, Feац.ац·6Н2О и ПАН в ДМФА; удаление ДМФА путем выпаривания при температуре не более 70°C, ИК-пиролиз полученного твердого остатка, представляющего собой композит Соац·4H2O/Feац.ац·6H2O/ПАН. Все химические реактивы имеют класс чистоты «химически чистые».

Технический результат достигается использованием выбранных определенных исходных компонентов (полиакрилонитрила (ПАН), соединений металла (Соац·4H2O, Feац.ац·6H2O)), условий проведения процесса растворения компонентов и процесса удаления растворителя, ИК-нагрева полученного твердого остатка Соац·4H2O/Feац.ац·6Н2О/ПАН при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин с выдержкой 15 мин при температуре 150°C и 200°C, а также выдержкой в течение 10 мин при финальной температуре 600÷800°C, в результате чего получается целевой продукт - металлоуглеродный нанокомпозит FeCo/C, содержащий наночастицы FeCo с размером от 5 до 50 нм.

Для анализа фазового состава нанокомпозита и определения размера наночастиц FeCo использован рентгеновский дифрактометр EMMA (Австралия), излучение Cu, графитовый монохроматор, а также Дифрей 401 с Cr-излучением. Для прямого измерения размеров наночастиц использован электронный микроскоп LEO912 АВ OMEGA, ускоряющее напряжение 60-120 кВ, увеличение 80х-500000х. Средний размер наночастиц интерметаллида FeCo рассчитан по результатам РФА из дифрактограмм по уравнению Дебая-Шерера:

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ - длина волны рентгеновского Cu - излучения (1,54056 Å), Θ - дифракционный угол, град.

Размер наночастиц оценивался по микрофотографиям проб нанокомпозита, полученным методом просвечивающей электронной микроскопии (ПЭМ).

Пример 1. Готовится 20 мл совместного раствора ПАН, СОац·4Н2О и Feац.ац·6H2O в ДМФА с концентрациями железа 10% и кобальта 10% от массы полимера и концентрацией ПАН 5% от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mFeац.ац·6H2O составляет 0,46 г, mCoац·4H2O составляет 0,32 г, mПАН составляет составляет 1 г; а также в коническую колбу, с объемом 50 мл, наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Соац·4Н2О, Feац.ац·6H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры 40°C. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается красно-бурый вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры не более 70°C, и выдерживается в нем до завершения процесса выпаривания (mтв.ост. остается постоянной). Полученный твердый остаток красно-бурого цвета подвергается температурной обработке в установке ИК-нагрева. Процесс проводится при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин в несколько этапов: 1) при температурах 150°C и 200°C с выдержкой в течение 15 минут при каждой соответствующей температуре; 2) при финальной температуре 700°C с выдержкой в течение 10 минут.

В процессе ИК-нагрева твердого остатка Соац·4Н2О/Feац.ац·6Н2О/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Со и Fe из соединения, а за счет дальнейшего взаимодействия формируются наночастицы интерметаллида FeCo. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит FeCo/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц FeCo. Средний размер наночастиц составил 18 нм. На фиг.1 приведена дифрактограмма нанокомпозита и результаты фазового анализа нанокомпозита FeCo/C, на фиг. 2 представлена одна из серии микрофотографий нанокомпозита FeCo/C, полученная методом просвечивающей электронной микроскопии (ПЭМ), на фиг. 3 показано распределение наночастиц FeCo по размерам.

Пример 2. Готовится 20 мл совместного раствора ПАН, Соац·4Н2О и Feац.ац·6H2O в ДМФА с концентрациями железа 20%, кобальта 20% от массы полимера и ПАН 5% от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mFeац.ац·6H2O составляет 0,92 г, mCoац·4H2O составляет 0,64 г, mПАН составляет 1 г; а также в коническую колбу, с объемом 50 мл, наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Соац·4H2O, Feац.ац·6H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры 40°C. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается красно-бурый вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры не более 70°C, и выдерживается в нем до завершения процесса выпаривания (mтв.ост. остается постоянной). Полученный твердый остаток красно-бурого цвета подвергается температурной обработке в установке ИК-нагрева.

Процесс проводится при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин в несколько этапов: 1) при температурах 150°C и 200°C с выдержкой в течение 15 минут при каждой соответствующей температуре; 2) при финальной температуре 800°C с выдержкой в течение 10 минут.

В результате получается нанокомпозит FeCo/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц FeCo. Средний размер наночастиц составил 37 нм.

Пример 3. Готовится 20 мл совместного раствора ПАН, Соац·4H2O и Feац.ац·6H2O в ДМФА с концентрациями железа 5%, кобальта 5% от массы полимера и ПАН 5 мас.% от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mFeац.ац·6H2O составляет 0,23 г, mCoац·4H2O составляет 0,16 г, mПАН составляет 1 г; а также в коническую колбу, с объемом 50 мл, наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Coац·4H2O, Feац.ац·6H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры 40°C. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается красно-бурый вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры, не превышающей 70°C, и выдерживается в нем до завершения процесса выпаривания (mтв.ост остается постоянной). Полученный твердый остаток красно-бурого цвета подвергается температурной обработке в установке ИК-нагрева.

Процесс проводится при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин в несколько этапов: 1) при температурах 150°C и 200°C с выдержкой в течение 15 минут при каждой соответствующей температуре; 2) при финальной температуре 600°C с выдержкой в течение 10 минут.

В результате получается нанокомпозит FeCo/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц FeCo. Средний размер наночастиц составил 12 нм.

Таким образом, условия проведения процесса синтеза (температура; давление в реакционной камере; концентрация Fe и Со в полимере) определяют размер наночастиц FeCo. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры наночастиц FeCo в зависимости от условий проведения процесса синтеза (температура финальной стадии ИК-нагрева, концентрации металлов) (таблица 1).

Способ синтеза металлоуглеродного нанокомпозита, включающий ряд последовательных стадий, а именно приготовления совместного раствора полиакрилонитрила (ПАН) и ацетилацетоната Fe(CHCOCH=C(CH)O)·6HO в диметилформамиде, выдержки до полного растворения всех компонентов, удаления диметилформамида путем выпаривания, нагревания полученного твердого остатка посредством высокоинтенсивного инфракрасного излучения, отличающийся тем, что приготовление указанного совместного раствора осуществляют при температуре 40°C, дополнительно вводя раствор ацетата кобальта Со(СНСОО)·4HO в диметилформамиде, при этом концентрация ПАН составляет 5% от массы диметилформамида, концентрация железа 5÷20% и кобальта 5÷20% от массы ПАН, удаление диметилформамида проводят при температуре не более 70°C, а твердый остаток нагревают на всех этапах со скоростью 20°C/мин при давлении в реакционной камере 10÷10 мм рт. ст., выдерживают по 15 мин при температуре 150°C и 200°C, а выдержку при финальной температуре 600÷800°C проводят в течение 10 минут с получением целевого продукта - металлоуглеродного нанокомпозита FeCo/C, содержащего наночастицы FeCo с размером от 5 до 50 нм.
СПОСОБ СИНТЕЗА МЕТАЛЛОУГЛЕРОДНОГО НАНОКОМПОЗИТА FeCo/C
СПОСОБ СИНТЕЗА МЕТАЛЛОУГЛЕРОДНОГО НАНОКОМПОЗИТА FeCo/C
СПОСОБ СИНТЕЗА МЕТАЛЛОУГЛЕРОДНОГО НАНОКОМПОЗИТА FeCo/C
Источник поступления информации: Роспатент

Показаны записи 221-230 из 246.
20.01.2016
№216.013.a041

Установка для металлотермического восстановления щелочно-земельных металлов

Изобретение относится к металлургии. Установка включает реакционную камеру, с противоположных сторон которой расположены камера загрузки сырьевых брикетов и камера разгрузки обработанных брикетов. Теплоизоляционный корпус реакционной камеры соединен с первым механизмом вертикального перемещения...
Тип: Изобретение
Номер охранного документа: 0002572667
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bc92

Способ выплавки стали в электрических печах

Изобретение относится к металлургии, в частности к способу выплавки стали в электрической печи. Способ включает загрузку в печь шихты, содержащей стальной лом, металлизованные окатыши, шлакообразующие материалы и металлургические брикеты со степенью металлизации 65-70%. Металлургические брикеты...
Тип: Изобретение
Номер охранного документа: 0002573847
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd06

Способ получения ионно-плазменного вакуумного-дугового керамикометаллического покрытия tin-cu для твердосплавного режущего инструмента расширенной области применения

Изобретение относится к способу получения наноструктурного керамикометаллического покрытия TiN-Cu на твердосплавном режущем инструменте и может быть использовано в металлообработке. Проводят предварительную очистку поверхности инструмента и последующее вакуумно-дуговое осаждение покрытия...
Тип: Изобретение
Номер охранного документа: 0002573845
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.be15

Устройство для загрузки металлизованных окатышей в дуговую печь

Изобретение относится к области металлургии, а именно к устройствам для загрузки металлизованных окатышей в дуговую печь. Устройство снабжено установленным на приемной воронке фотоэлементным датчиком фиксации верхнего уровня загрузки окатышей в ней, блоком автоматического включения и отключения...
Тип: Изобретение
Номер охранного документа: 0002576213
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c236

Композиционный материал с металлической матрицей и наноразмерными упрочняющими частицами и способ его изготовления

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц. Для...
Тип: Изобретение
Номер охранного документа: 0002574534
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca6c

Подложка для химического осаждения из паровой фазы (cvd) алмаза и способ его получения

Изобретение относится к подложке для алмазного покрытия, наносимого методом химического осаждения из паровой фазы (CVD), способу ее формирования и электродному стержню для формирования подложки упомянутым способом. Подложка содержит основу из карбидного твердого сплава или стали и слой, который...
Тип: Изобретение
Номер охранного документа: 0002577638
Дата охранного документа: 20.03.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7420

Способ определения состава твердого раствора

Использование: для оценки состава двухкомпонентных твердых растворов в нанодисперсных материалах, включающих, в частности, наноразмерные частицы: Pt-Ru, Pt-Rh, Fe-Co, Pd-Ru, Pd-Rh, Pd-H, Hf-O. Сущность изобретения заключается в том, что предложенный способ определения состава двухкомпонентного...
Тип: Изобретение
Номер охранного документа: 0002597935
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7e29

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов, на основе соединений редкоземельных металлов и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. В...
Тип: Изобретение
Номер охранного документа: 0002601149
Дата охранного документа: 27.10.2016
Показаны записи 221-230 из 261.
10.01.2016
№216.013.9f66

Способ устранения разгрузки осей колесных пар карьерных локомотивов при трогании с места и движении на наклонных участках железнодорожного пути

Изобретение относится к области железнодорожного транспорта и может быть применено для устранения разгрузки осей колесных пар карьерных локомотивов и улучшения сцепных свойств карьерных транспортных средств. Для устранения разгрузки осей колёсных пар карьерных локомотивов при трогании с места и...
Тип: Изобретение
Номер охранного документа: 0002572443
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a03f

Установка для выделения серебра из серебросодержащего сплава

Изобретение относится к цветной металлургии. Установка содержит электролитическую камеру, анодные и катодные токоподводы, анодную корзину для загрузки серебросодержащего сплава, узел колебаний и размещенную внутри термостата емкость для электролита с перистальтическим насосом для циркуляции...
Тип: Изобретение
Номер охранного документа: 0002572665
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a041

Установка для металлотермического восстановления щелочно-земельных металлов

Изобретение относится к металлургии. Установка включает реакционную камеру, с противоположных сторон которой расположены камера загрузки сырьевых брикетов и камера разгрузки обработанных брикетов. Теплоизоляционный корпус реакционной камеры соединен с первым механизмом вертикального перемещения...
Тип: Изобретение
Номер охранного документа: 0002572667
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bc92

Способ выплавки стали в электрических печах

Изобретение относится к металлургии, в частности к способу выплавки стали в электрической печи. Способ включает загрузку в печь шихты, содержащей стальной лом, металлизованные окатыши, шлакообразующие материалы и металлургические брикеты со степенью металлизации 65-70%. Металлургические брикеты...
Тип: Изобретение
Номер охранного документа: 0002573847
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd06

Способ получения ионно-плазменного вакуумного-дугового керамикометаллического покрытия tin-cu для твердосплавного режущего инструмента расширенной области применения

Изобретение относится к способу получения наноструктурного керамикометаллического покрытия TiN-Cu на твердосплавном режущем инструменте и может быть использовано в металлообработке. Проводят предварительную очистку поверхности инструмента и последующее вакуумно-дуговое осаждение покрытия...
Тип: Изобретение
Номер охранного документа: 0002573845
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.be15

Устройство для загрузки металлизованных окатышей в дуговую печь

Изобретение относится к области металлургии, а именно к устройствам для загрузки металлизованных окатышей в дуговую печь. Устройство снабжено установленным на приемной воронке фотоэлементным датчиком фиксации верхнего уровня загрузки окатышей в ней, блоком автоматического включения и отключения...
Тип: Изобретение
Номер охранного документа: 0002576213
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c236

Композиционный материал с металлической матрицей и наноразмерными упрочняющими частицами и способ его изготовления

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц. Для...
Тип: Изобретение
Номер охранного документа: 0002574534
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca6c

Подложка для химического осаждения из паровой фазы (cvd) алмаза и способ его получения

Изобретение относится к подложке для алмазного покрытия, наносимого методом химического осаждения из паровой фазы (CVD), способу ее формирования и электродному стержню для формирования подложки упомянутым способом. Подложка содержит основу из карбидного твердого сплава или стали и слой, который...
Тип: Изобретение
Номер охранного документа: 0002577638
Дата охранного документа: 20.03.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
+ добавить свой РИД