×
27.05.2015
216.013.4f7a

Результат интеллектуальной деятельности: СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДВЕС ДЛЯ КИНЕТИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области магнитных опор на основе объемных высокотемпературных сверхпроводников (ВТСП) для кинетических накопителей энергии. Сверхпроводящий магнитный подвес для кинетического накопителя энергии (КНЭ) установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, и включает в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора. Корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса КНЭ. Корпус статора также снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм. Технический результат: упрощение конструкции, повышение эффективности работы вакуумной системы, обеспечение удобства проведения автономных технологических испытаний подвеса. 2 ил.
Основные результаты: Сверхпроводящий магнитный подвес для кинетического накопителя энергии, установленный в корпусе кинетического накопителя энергии, соединенном с системой вакуумной откачки, включающий в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора, отличающийся тем, что корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса кинетического накопителя энергии, а корпус статора снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм.

Изобретение относится к области магнитных опор на основе объемных высокотемпературных сверхпроводников (ВТСП) для кинетических накопителей энергии (КНЭ).

Известно сверхпроводящее подшипниковое устройство (Европатент № ЕР 0575618, МПК F16C 32/04, опубл. 29.12.1993), выполненное в виде двух дисков, на одном из которых размещен сверхпроводник в корпусе, а на другом - постоянные кольцевые магниты. Такое устройство обладает малой несущей способностью и не может быть использовано для кинетического накопителя энергии.

Известно сверхпроводящее подшипниковое устройство для устройства накопления энергии (Заявка Японии № JP 2003329038, МПК F16C 32/04, опубл. 10.11.2003), содержащее ротор, магнитные подшипники, сверхпроводящие подшипники в осевом и радиальном направлениях, выполненные в виде кольцевых сверхпроводников, расположенных в корпусах кольцевой формы, и оппозитно расположенных по отношению к ним наборов кольцевых постоянных магнитов. Однако такая конструкция громоздка и требует больших затрат на охлаждение сверхпроводников ввиду больших тепловых потерь.

Наиболее близким техническим решением является сверхпроводящий магнитный подвес с ВТСП фирмы «Boeing» (Strasik, M., J. Hull, J. Mittleider, J. Gonder, P. Johnson, K. McCrary, and C. McIver. "An Overview of Boeing flywheel Energy Storage Systems with High-temperature Superconducting Bearings." Superconductor Science and Technology 23 (2010): 1-5). Сверхпроводящий магнитный подвес для КНЭ установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, включает в себя статор в виде корпуса, содержащего блок ВТСП элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора.

Недостатком такого решения является необходимость вакуумирования камеры КНЭ, в которой расположен подвес, до давления Р≈1·10-3 Па, необходимого для поддержания температуры блока ВТСП элементов, обеспечивающей работоспособность подвеса. Поддержание такого уровня давления внутри всего объема КНЭ является очень сложной и дорогой технической проблемой, поскольку в объеме КНЭ присутствуют устройства и материалы с высоким уровнем газоотделения (связующий материал волокон маховика, изоляционные материалы и т.п.), узкие тупиковые зазоры и щели. Это увеличивает время откачки, ухудшает предельный вакуум при откачке, требует применения вакуумного оборудования с высокими скоростями откачки. В тоже время для эффективного функционирования самого маховика с точки зрения минимизации потерь на трение при вращении достаточно обеспечить давление в камере КНЭ примерно P≈1 Па. К недостаткам следует отнести также то, что такая конструкция подвеса не является универсальной, применима только при размещении ее в вакуумной камере, что затрудняет отработку и технологические испытания статора.

Техническим результатом использования данного изобретения является упрощение конструкции, повышение эффективности работы вакуумной системы, обеспечение удобства проведения технологических испытаний подвеса.

Указанный технический результат достигается тем, что сверхпроводящий магнитный подвес (СМП) для кинетического накопителя энергии (КНЭ) установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, включает в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора. Корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса КНЭ, а корпус статора снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм.

На фиг.1 показана схема КНЭ со сверхпроводящим магнитным подвесом, на фиг.2 - схема подвеса в разрезе.

Сверхпроводящий магнитный подвес для кинетического накопителя энергии содержит статор 1, который закреплен внутри корпуса 2 КНЭ, тут же расположен ротор 3 на валу 4. Статор 1 жестко соединен с корпусом 2 КНЭ с помощью кронштейнов (фиг.1). Корпус 2 КНЭ снабжен системой вакуумной откачки 6. Корпус статора снабжен автономной системой вакуумной откачки 7. На валу 4 закреплены постоянные магниты 8 (фиг.2). В корпусе подвеса 1 закреплен блок с ВТСП элементами 9 с помощью кронштейнов с низкой теплопередачей 10. Для повышения эффективности теплозащиты блока 9 вокруг него проложена экранно-вакуумная изоляция 11. Торцевые поверхности корпуса статора 12, сопрягаемые с валом, снабжены пассивными вакуумными затворами, выполненными в виде втулок 13. Корпус статора соединен с системой охлаждения 14 (на фиг.1 не показана).

Сверхпроводящий магнитный подвес работает следующим образом. Сначала включается система вакуумной откачки 6, создающая внутри корпуса КНЭ вакуум с давлением Р≈1 Па, достаточным для минимизации потерь от аэродинамического нагрева накопительного элемента (маховика). После этого включается автономная система вакуумной откачки статора 7, которая доводит давление в корпусе статора 1 до величины Р≈1·10-3 Па. При этом выхлоп автономной системы статора производится внутрь корпуса КНЭ. Втулки корпуса статора, обеспечивая зазор с валом в пределах 0,25…0,75 мм на длине 50…100 мм, позволяют создать такой вакуумный затвор, при котором автономная система вакуумной откачки статора, учитывая, что объем которого (5…7 литров) на порядки меньше объема корпуса КНЭ (700…1000 литров), позволяет поддерживать давление в статоре величиной Р<1·10-3 Па. Эффективность эксплуатации такого затвора может быть существенно повышена путем заполнения зазора вязким веществом с малым газоотделением. Поддержание в процессе работы указанного значения величины давления достаточно для длительной эффективной работы подвеса. Величины зазоров и длины в сопряжении были определены в результате экспериментов на макете подвеса, построенного по приведенной в заявке схеме. После достижения давления в статоре до величины Р≈1·10-3 Па начинается захолаживание блока ВТСП элементов при помощи системы охлаждения 14. В дальнейшем производятся действия по вводу КНЭ в эксплуатацию: раскручивание ротора с маховиком и т.д.

Поддержание в статоре указанного давления позволяет настолько уменьшить теплоприток к ВТСП элементам, что корпус статора можно изготавливать без внутренней стенки, обращенной к валу, основное назначение которой было обеспечение теплозащиты блока ВТСП элементов от тепла, поступающего от вала. Следовательно, исключение внутренней стенки позволяет приблизить ВТСП элементы к постоянным магнитам, уменьшить величину зазора между ротором и статором, таким образом повысив жесткость подвеса. При этом снижается вероятность касания элементов ротора и статора. Экспериментальные исследования показали, что при осуществлении такой конструкции зазор был уменьшен на 0,5…0,7 мм, что повысило жесткость примерно на 15%. Кроме того, даже случайное касание ротором экранно-вакуумной изоляции 11 не будет приводить к тем последствиям, к которым привело бы касание ротора о твердую поверхность внутренней стенки статора.

Сверхпроводящий магнитный подвес для кинетического накопителя энергии, установленный в корпусе кинетического накопителя энергии, соединенном с системой вакуумной откачки, включающий в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора, отличающийся тем, что корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса кинетического накопителя энергии, а корпус статора снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм.
СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДВЕС ДЛЯ КИНЕТИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ
СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДВЕС ДЛЯ КИНЕТИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 577.
20.10.2015
№216.013.83d5

Волноводная антенна

Использование: изобретение относится к области радиотехники, а точнее к области волноводных антенн с эллиптической поляризацией, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах. Сущность: волноводная антенна...
Тип: Изобретение
Номер охранного документа: 0002565352
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.83e1

Сейсмическая система обнаружения

Изобретение относится к техническим средствам охраны и может быть использовано для охраны протяженных рубежей. Технический результат - повышение помехоустойчивости и надежности, полная визуальная маскируемость и масштабируемость. Предложенная система содержит средство обнаружения, включающее в...
Тип: Изобретение
Номер охранного документа: 0002565364
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.853d

Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного...
Тип: Изобретение
Номер охранного документа: 0002565712
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87aa

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат - уменьшение погрешности и повышение быстродействия дифференциального измерительного преобразователя. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002566333
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87ad

Способ исправления ошибок при передаче информации биимпульсным кодом манчестер-ii и устройство его осуществления

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер...
Тип: Изобретение
Номер охранного документа: 0002566336
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87dd

Микро-опто-электромеханический двухосевой датчик угловой скорости и линейного ускорения

Изобретение относится к области приборостроения, в частности к устройствам для измерения угловой скорости и линейного ускорения. Микро-опто-электромеханический двухосевой датчик угловой скорости и линейного ускорения, состоящий из основного канала приемо-передачи оптического излучения,...
Тип: Изобретение
Номер охранного документа: 0002566384
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.898a

Квазикогерентный демодулятор сигналов бинарной фазовой манипуляции

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и...
Тип: Изобретение
Номер охранного документа: 0002566813
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8a47

Квазикогерентный модулятор сигналов бинарной фазовой манипуляции

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и...
Тип: Изобретение
Номер охранного документа: 0002567002
Дата охранного документа: 27.10.2015
Показаны записи 231-240 из 435.
20.10.2015
№216.013.83d5

Волноводная антенна

Использование: изобретение относится к области радиотехники, а точнее к области волноводных антенн с эллиптической поляризацией, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах. Сущность: волноводная антенна...
Тип: Изобретение
Номер охранного документа: 0002565352
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.83e1

Сейсмическая система обнаружения

Изобретение относится к техническим средствам охраны и может быть использовано для охраны протяженных рубежей. Технический результат - повышение помехоустойчивости и надежности, полная визуальная маскируемость и масштабируемость. Предложенная система содержит средство обнаружения, включающее в...
Тип: Изобретение
Номер охранного документа: 0002565364
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.853d

Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного...
Тип: Изобретение
Номер охранного документа: 0002565712
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87aa

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат - уменьшение погрешности и повышение быстродействия дифференциального измерительного преобразователя. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002566333
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87ad

Способ исправления ошибок при передаче информации биимпульсным кодом манчестер-ii и устройство его осуществления

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер...
Тип: Изобретение
Номер охранного документа: 0002566336
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87dd

Микро-опто-электромеханический двухосевой датчик угловой скорости и линейного ускорения

Изобретение относится к области приборостроения, в частности к устройствам для измерения угловой скорости и линейного ускорения. Микро-опто-электромеханический двухосевой датчик угловой скорости и линейного ускорения, состоящий из основного канала приемо-передачи оптического излучения,...
Тип: Изобретение
Номер охранного документа: 0002566384
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.898a

Квазикогерентный демодулятор сигналов бинарной фазовой манипуляции

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и...
Тип: Изобретение
Номер охранного документа: 0002566813
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8a47

Квазикогерентный модулятор сигналов бинарной фазовой манипуляции

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и...
Тип: Изобретение
Номер охранного документа: 0002567002
Дата охранного документа: 27.10.2015
+ добавить свой РИД