×
27.05.2015
216.013.4de4

Результат интеллектуальной деятельности: КОМБИНИРОВАННАЯ ТЕПЛОВАЯ СИСТЕМА С ЗАМКНУТЫМ КОНТУРОМ ДЛЯ РЕКУПЕРАЦИИ ОТРАБОТАННОГО ТЕПЛА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002551458
Дата охранного документа
27.05.2015
Аннотация: Изобретение относится к системам с тепловым циклом для рекуперации отработанного тепла. Система рекуперации отработанного тепла включает систему (12) цикла Брайтона (СЦБ). СЦБ (12) содержит нагреватель (16), предназначенный для циркуляции пара диоксида углерода при теплообмене с горячей текучей средой для нагревания пара диоксида углерода, и первую турбину (18), соединенную с нагревателем и предназначенную для расширения пара диоксида углерода. Также СЦБ (12) содержит холодильник (20) и компрессор (22), предназначенный для сжатия пара диоксида углерода, подаваемого холодильником (20). Система рекуперации отработанного тепла также включает систему (14) цикла Ренкина (СЦР), соединенную с СЦБ (12), причем СЦР (14) включает первый теплообменник (28), второй теплообменник (30) и третий теплообменник (32). Причем пар диоксида углерода из первой турбины (18) циркулирует при теплообмене с парообразным рабочим телом последовательно через первый теплообменник (28), второй теплообменник (30) и третий теплообменник (32) для нагревания рабочего тела. Холодильник (20) предназначен для охлаждения пара диоксида углерода, подаваемого через первый теплообменник (28), второй теплообменник (30) и третий теплообменник (32). Четвертый теплообменник (34) предназначен для циркуляции парообразного рабочего тела при теплообмене с паром диоксида углерода, подаваемым из компрессора (22), для нагревания рабочего тела. Пар диоксида углерода из четвертого теплообменника (34) нагревают нагревателем (16) СЦБ (12). Вторая турбина (36) предназначена для расширения парообразного рабочего тела, подаваемого из четвертого теплообменника (34) через первый теплообменник (28). Конденсатор (38) предназначен для конденсации парообразного рабочего тела, подаваемого из второй турбины (36) через третий теплообменник (32). А также раскрыт способ эксплуатации системы рекуперации отработанного тепла. Технический результат заключается в обеспечении высокоэффективной рекуперации отработанного тепла с целью генерирования электричества. 2 н. и 10 з.п. ф-лы, 3 ил.

Описанные здесь воплощения в основном относятся к системам с тепловым циклом для рекуперации отработанного тепла и, более конкретно, к комбинированной тепловой системе с замкнутым контуром, включающей основной цикл Брайтона и дополнительный цикл Ренкина, для рекуперации отработанного тепла и способу их эксплуатации.

Огромное количество отработанного тепла образуется в различных производственных и промышленных процессах и операциях. Примеры источников отработанного тепла включают тепло от батарей для отопления помещений, паровых котлов, двигателей и систем охлаждения. Термин «отработанное тепло» включает любые притоки остаточного тепла, сбрасываемого в ходе первичных процессов, которые традиционно не применяют в качестве источника энергии.

Некоторые системы выработки электроэнергии обеспечивают более высокую надежность и автономную работу на альтернативных видах топлива, таких как биогаз или газ из органических отходов, причем примерами таких систем являются газовые турбины и двигатели внутреннего сгорания, такие как микротурбины и поршневые двигатели. Двигатели внутреннего сгорания можно использовать для генерирования электроэнергии с использованием такого топлива, как бензин, природный газ, биогаз, растительное масло и дизельное топливо. Однако могут происходить выбросы в атмосферу загрязняющих веществ, таких как оксиды азота и твердые частицы.

Одним из способов выработки электроэнергии из отработанного тепла двигателя внутреннего сгорания без увеличения выбросов является применение дополнительного парового цикла Ренкина. Цикл Ренкина обычно включает турбогенератор, испаритель/бойлер, конденсатор и жидкостной насос. Однако паровые циклы Ренкина на водяной основе не являются привлекательными в вышеуказанной области низкотемпературного отработанного тепла из-за высокой стоимости и низкого к.п.д. Производительность органического цикла Ренкина (ОРЦ) ограничена допустимыми рабочими телами, циркулирующими в ОРЦ. Пар, используемый в качестве рабочего тела, может быть оптимальным только для определенного диапазона температур и давлений цикла. Этот традиционный дополнительный паровой цикл Ренкина требует конденсации при относительно низком давлении с использованием больших низкотемпературных турбин и объемов конденсатора. Поэтому установка системы традиционного дополнительного парового цикла Ренкина является несоразмерно объемной и сложной с учетом относительно небольшого выхода, получаемого от низкотемпературного отработанного тепла. Низкое давление конденсации пара вносит другие сложности, такие как потребность в специальных деаэраторах для удаления атмосферного воздуха, который просачивается снаружи в сосуды с давлением ниже атмосферного.

Существует потребность в разработке простой системы и способа эффективной рекуперации отработанного тепла, не имеющих ограничений парового рабочего тела, циркулирующего в системе цикла Ренкина.

Описание изобретения

В соответствии с одним из воплощений изобретения обеспечена система рекуперации отработанного тепла. Система рекуперации отработанного тепла включает систему цикла Брайтона, содержащую нагреватель, предназначенный для циркуляции пара диоксида углерода, при теплообмене с горячей текучей средой, для нагревания пара диоксида углерода. Система цикла Ренкина соединена с системой цикла Брайтона и предназначена для циркуляции рабочего тела при теплообмене с паром диоксида углерода, чтобы обеспечить нагрев рабочего тела.

В соответствии с другим воплощением изобретения обеспечен способ эксплуатации системы рекуперации отработанного тепла.

В соответствии с одним из воплощений изобретения обеспечена система рекуперации отработанного тепла. Система рекуперации отработанного тепла включает нагреватель, предназначенный для циркуляции пара диоксида углерода, при теплообмене с горячей текучей средой из источника тепла, для нагревания пара диоксида углерода. Система цикла Ренкина соединена с системой цикла Брайтона и предназначена для циркуляции рабочего тела в теплообменнике при теплообмене с паром диоксида углерода и горячей текучей средой, чтобы обеспечить нагрев рабочего тела.

Описание чертежей

Эти и другие признаки, аспекты и преимущества изобретения станут более понятными из последующего подробного описания со ссылками на прилагаемые чертежи, на которых одинаковые обозначения соответствуют одинаковым элементам на всех чертежах, где:

На Фиг.1 представлено схематическое изображение системы рекуперации отработанного тепла, содержащей систему цикла Брайтона и систему цикла Ренкина, согласно воплощению изобретения.

На Фиг.2 представлена блок-схема, показывающая стадии, осуществляемые в способе эксплуатации системы рекуперации отработанного тепла согласно воплощению изобретения.

На Фиг.3 представлено схематическое изображение системы рекуперации отработанного тепла, содержащей систему цикла Брайтона и систему цикла Ренкина, согласно воплощению изобретения.

Подробное описание изобретения

В соответствии с обсуждаемым здесь воплощением раскрывают систему рекуперации отработанного тепла. Система по воплощению включает систему цикла Брайтона (основной цикл), содержащую нагреватель, предназначенный для циркуляции пара диоксида углерода, при теплообмене с горячей текучей средой, для нагревания пара диоксида углерода. Система цикла Ренкина (дополнительный цикл) соединена с системой цикла Брайтона и предназначена для циркуляции рабочего тела, при теплообмене с горячей текучей средой, для нагревания рабочего тела. Согласно воплощению изобретения, система рекуперации отработанного тепла объединена с источниками тепла для обеспечения высокоэффективной рекуперации отработанного тепла с целью генерирования электричества. Источники тепла могут включать двигатели внутреннего сгорания, газовые турбины, геотермальные, солнечные тепловые, промышленные и жилищные источники тепла или т.п.

На Фиг.1 показана система 10 рекуперации отработанного тепла в соответствии с воплощением изобретения. Система 10 включает систему 12 цикла Брайтона (основной цикл), соединенную с системой 14 цикла Ренкина (дополнительный цикл). В представленном воплощении система 12 цикла Брайтона включает нагреватель 16, первую турбину 18, холодильник 12 и компрессор 22. Пар диоксида углерода циркулирует в системе 12 цикла Брайтона.

Нагреватель 16 соединен с источником 24 тепла, например с блоком для отработанных газов системы генерирования тепла (например, двигателя). Нагреватель 16 получает тепло от горячей текучей среды, например из отработанного газа, выделяющегося из источника тепла, и нагревает диоксид углерода с образованием нагретого пара диоксида углерода. В одном конкретном воплощении пар диоксида углерода может поступать из нагревателя 16 при температуре приблизительно 490°С и давлении 20 МПа (200 бар). Пар диоксида углерода пропускают через первую турбину 18 для расширения пара диоксида углерода и приведения в действие первого генератора 26, предназначенного для генерирования электроэнергии. В конкретном воплощении пар диоксида углерода может поступать из первой турбины 18 при температуре приблизительно 320°С и давлении приблизительно 4 МПа (40 бар).

В представленном воплощении использование диоксида углерода в качестве рабочего тела имеет преимущество, так как он является невоспламеняемым, коррозионностойким, нетоксичным и позволяет выдерживать высокие температуры в ходе цикла (например, приблизительно 400°С). В одном воплощении, как описано выше, диоксид углерода можно нагревать до сверхкритических высоких температур без риска его химического разложения.

В представленном воплощении система 14 цикла Ренкина включает первый теплообменник 28, второй теплообменник 30, третий теплообменник 32 и четвертый теплообменник 34. Рабочее тело, например углеводородная текучая среда, циркулирует в системе 14 цикла Ренкина. В еще одном конкретном воплощении рабочее тело может включать органическое рабочее тело. Органическое рабочее тело может включать пропан, бутан, пентафторпропан, пентафторбутан, пентафтор-полиэфир, масло или их сочетания. Следует отметить, что органические рабочие тела не ограничены перечисленными соединениями, и можно использовать другие рабочие тела, применимые в органических циклах Ренкина. Пар диоксида углерода из первой турбины 18 проходит цикл при теплообмене с парообразным рабочим телом последовательно через первый теплообменник 28, второй теплообменник 30 и третий теплообменник 32, чтобы обеспечить нагрев рабочего тела. В конкретном воплощении пар диоксида углерода выходит из третьего теплообменника 32 при температуре 85°С и давлении 4 МПа (40 бар). Диоксид углерода из третьего теплообменника 32 подают через холодильник 20 для охлаждения пара диоксида углерода. Затем охлажденный пар диоксида углерода сжимают до значительно более высокого давления посредством компрессора 22. В одном воплощении пар диоксида углерода выходит из компрессора 22 при температуре 210°С и давлении 20 МПа (200 бар). В одном воплощении компрессор 22 может быть многоступенчатым компрессором с промежуточными охладителями, расположенными после каждой ступени многоступенчатого компрессора.

Сжатый пар диоксида углерода из компрессора 22 пропускают при теплообмене с рабочим телом через четвертый теплообменник 34, чтобы нагреть парообразное рабочее тело и посредством этого снизить температуру пара диоксида углерода достаточно для того, чтобы поглощать тепло из источника 24 отработанного тепла при таких низких температурах, как, например, 120°С. Это обеспечивает максимальное извлечение тепла из источника 24 отработанного тепла. В конкретном воплощении парообразное рабочее тело может выходить из четвертого теплообменника 34 при температуре приблизительно 170°С и давлении приблизительно 6 МПа (60 бар). Другими словами, парообразное рабочее тело находится сверхкритическом состоянии. Цикл повторяют в системе 12 цикла Брайтона. Затем парообразное рабочее тело из четвертого теплообменника 34 пропускают через первый теплообменник 28 при теплообмене с паром диоксида углерода для дополнительного нагревания парообразного рабочего тела. В одном воплощении парообразное рабочее тело выходит из первого теплообменника 28 при температуре приблизительно 205°С и давлении приблизительно 6 МПа (60 бар).

Система 14 цикла Ренкина дополнительно включает вторую турбину 36, конденсатор 38, насос 40 и устройство 42 для разделения потока. Парообразное рабочее тело пропускают через вторую турбину 36 для расширения парообразного рабочего тела и приведения в действия второго генератора 44, предназначенного для генерирования электроэнергии. В конкретном воплощении рабочее тело выходит из второй турбины при температуре приблизительно 105°С и давлении приблизительно 0,5 МПа (5 бар). Вторая турбина 36 может представлять собой расширитель аксиального типа, расширитель импульсного типа или высокотемпературный расширитель шнекового типа, расширитель турбинного типа с радиальной подачей. Другими словами, парообразное рабочее тело находится в сверхкритическом состоянии. Расширенное парообразное рабочее тело из второй турбины 36 пропускают через третий теплообменник 32 при теплообмене с паром диоксида углерода. В одном воплощении парообразное рабочее тело выходит из третьего теплообменника 32 при температуре приблизительно 65°С и давлении приблизительно 5 МПа (50 бар).

После пропускания через вторую турбину 36 парообразное рабочее тело пропускают через третий теплообменник 32 в конденсатор 38. Парообразное рабочее тело конденсируют до жидкого состояния, чтобы образовать конденсированное рабочее тело. В конкретном воплощении конденсированное рабочее тело находится при температуре приблизительно 50°С и давлении приблизительно 5 МПа (50 бар). Затем конденсированное рабочее тело перекачивают при относительно высоком давлении с помощью насоса 40 через третий теплообменник 32 в устройство 42 для разделения потока. Повышение давления и повторное нагревание рабочего тела приводит к постепенному фазовому переходу из жидкого состояния в парообразное состояние. В конкретном воплощении рабочее тело выходит из третьего теплообменника при температуре приблизительно 100°С и давлении приблизительно 6 МПа (60 бар).

В проиллюстрированном воплощении устройство 42 для разделения потока разделяет поток рабочего тела из третьего теплообменника 32 на две части. Устройство 42 для разделения потока обеспечивает подачу одной части парообразного рабочего тела из третьего теплообменника 32 в четвертый теплообменник 34 и подачу другой части парообразного рабочего тела из третьего теплообменника 32 в точку 46 выше по потоку относительно первого теплообменника 28. Другую часть парообразного рабочего тела из третьего теплообменника 32 смешивают с парообразным рабочим телом, подаваемым из четвертого теплообменника 34 в первый теплообменник 28. Цикл повторяют в системе 14 цикла Ренкина.

В проиллюстрированном воплощении присутствует множество операций теплообмена (который также можно назвать переносом тепла «внутри цикла») между паром диоксида углерода и парообразным рабочим телом. Это теплообмен между паром диоксида углерода и парообразным рабочим телом через теплообменники 28, 30, 32 и 34. Такой теплообмен служит для доведения до кипения рабочего тела (если рабочее тело находится при температуре ниже критической) или увеличения его энтальпии иным путем (если рабочее тело находится при температуре выше критической) в системе 14 цикла Ренкина.

В соответствии с обсуждаемым здесь воплощением в системе 12 цикла Брайтона диоксид углерода нагревают непосредственно (без переноса тепла через промежуточную текучую среду) с помощью источника отработанного тепла. Пар диоксида углерода расширяется с получением электроэнергии. Тепло от пара диоксида углерода передается углеводородной текучей среде, циркулирующей в системе 14 цикла Ренкина через последовательность теплообменников 28, 30, 32 и 34. Диоксид углерода циркулирует в парообразном состоянии в системе 12 цикла Брайтона, тогда как в системе 14 цикла Ренкина углеводородную текучую среду охлаждают и конденсируют до жидкого состояния перед повторным повышением давления и нагревом.

Как описано выше, использование диоксида углерода в качестве рабочего тела в системе 12 цикла Брайтона имеет преимущество, так как диоксид углерода остается инертным даже при существенно более высоких температурах, например, в интервале 300-600°С. Также диоксид углерода не подвергается значительному химическому разложению при более высоких температурах, что способствует достижению более высокого к.п.д. системы. Приведенная в качестве примера система 10 работает при значительно более высоких давлениях, например, 7-20 МПа (70-200 бар). Следовательно система 10 является компактной и простой. Циркулирующая текучая среда остается чистой и не требует деаэраторов, как это типично для паровых установок. Объединение системы цикла Брайтона, работающей с диоксидом углерода в качестве рабочего тела, и системы цикла Ренкина позволяет эффективно извлекать тепло из высокотемпературного источника тепла и в то же время эффективно преобразовывать остаточное низкотемпературное тепло в электроэнергию.

На Фиг.2 представлена блок-схема, показывающая стадии, осуществляемые в способе эксплуатации системы 10 рекуперации отработанного тепла. Способ включает циркуляцию пара диоксида углерода при теплообмене с горячей текучей средой через нагреватель 16 системы 12 цикла Брайтона, что представлено стадией 48. Нагреватель 16 получает тепло от горячей текучей среды, например отработанного газа, выделяющегося из источника тепла, и нагревает диоксид углерода с образованием нагретого пара диоксида углерода. Пар диоксида углерода пропускают через первую турбину 18 для расширения пара диоксида углерода, что представлено стадией 50. Другими словами, пар диоксида углерода пропускают через первую турбину 18 для расширения пара диоксида углерода и приведения в действие первого генератора 26, предназначенного для генерирования электроэнергии.

Пар диоксида углерода из первой турбины 18 проходит цикл при теплообмене с парообразным рабочим телом последовательно через первый теплообменник 28, второй теплообменник 30 и третий теплообменник 32 системы 14 цикла Ренкина для нагрева рабочего тела, что представлено стадией 52. Диоксид углерода из третьего теплообменника 32 пропускают через холодильник 20 для охлаждения пара диоксида углерода, что представлено стадией 54. Затем охлажденный пар диоксида углерода сжимают до значительно более высокого давления посредством компрессора 22, что представлено стадией 56. Затем сжатый пар диоксида углерода из компрессора 22 пропускают при теплообмене с парообразным рабочим телом через четвертый теплообменник 34, чтобы нагреть парообразное рабочее тело, что представлено стадией 58. Цикл повторяют в системе 12 цикла Брайтона.

Затем парообразное рабочее тело из четвертого теплообменника 34 пропускают через первый теплообменник 28 при теплообмене с паром диоксида углерода для дополнительного нагревания парообразного рабочего тела. Парообразное рабочее тело пропускают через вторую турбину 36 системы 14 цикла Ренкина для расширения парообразного рабочего тела и приведения в действие второго генератора 44, предназначенного для генерирования электроэнергии, что представлено стадией 60. Расширенное парообразное рабочее тело из второй турбины 36 пропускают через третий теплообменник 32 при теплообмене с паром диоксида углерода.

После пропускания через вторую турбину 36 парообразное рабочее тело пропускают через третий теплообменник 32 в конденсатор 38, что представлено стадией 62. Парообразное рабочее тело конденсируют до жидкого состояния, чтобы образовать конденсированное рабочее тело. Затем конденсированное рабочее тело перекачивают при относительно высоком давлении с помощью насоса 40 через третий теплообменник 32 в устройство 42 для разделения потока, что представлено стадией 64. Повышение давления и повторное нагревание рабочего тела приводит к постепенному фазовому переходу из жидкого состояния в парообразное состояние.

В проиллюстрированном воплощении устройство 42 для разделения потока разделяет поток рабочего тела из третьего теплообменника 32 на две части. Способ включает подачу одной части парообразного рабочего тела из третьего теплообменника 32 в четвертый теплообменник 34, что представлено стадией 66. Способ также включает подачу другой части парообразного рабочего тела из третьего теплообменника 32 в точку 46 выше по потоку относительно первого теплообменника, что представлено стадией 68. Другую часть парообразного рабочего тела из третьего теплообменника 32 смешивают с парообразным рабочим телом, подаваемым из четвертого теплообменника 34 в первый теплообменник 28, что представлено стадией 70. Цикл повторяют в системе 14 цикла Ренкина.

На Фиг.3 показана система 72 рекуперации отработанного тепла согласно воплощению изобретения. Система 72 включает систему цикла Брайтона (основной цикл) 74, соединенную с системой цикла Ренкина (дополнительный цикл) 76. В показанном воплощении система 74 цикла Брайтона включает нагреватель 77, турбину 78, холодильник 80, первую ступень 82 компрессора, вторую ступень 84 компрессора и промежуточный охладитель 86, расположенный между первой ступенью 82 компрессора и второй ступенью 84 компрессора. Пар диоксида углерода циркулирует через систему 74 цикла Брайтона.

Нагреватель 77 соединен с источником 88 тепла, например с блоком для отработанных газов системы генерирования тепла (например, двигателя). Нагреватель 77 получает тепло от горячей текучей среды, например из отработанного газа, выделяющегося из источника тепла, и нагревает диоксид углерода с образованием нагретого пара диоксида углерода. Пар диоксида углерода пропускают через первую турбину 78 для расширения пара диоксида углерода и приведения в действие первого генератора 90, предназначенного для генерирования электроэнергии.

В показанном воплощении система 76 цикла Ренкина включает теплообменники 92, 94, 96. Рабочее тело, например углеводородная текучая среда, циркулирует через систему 76 цикла Ренкина. Пар диоксида углерода из турбины 78 проходит цикл при теплообмене с парообразным рабочим телом последовательно через теплообменники 92, 94, 96 для нагрева рабочего тела. Диоксид углерода из теплообменника 96 пропускают через холодильник 80 для охлаждения пара диоксида углерода. Затем охлажденный пар диоксида углерода сжимают до значительно более высокого давления посредством первой ступени 82 компрессора и второй ступени 84 компрессора. Пар диоксида углерода из первой ступени 82 компрессора охлаждают посредством промежуточного охладителя 86 и затем подают на вторую ступень 84 компрессора.

Сжатый пар диоксида углерода со второй ступени 84 компрессора пропускают при теплообмене с горячей текучей средой из источника 88 тепла через нагреватель 77, чтобы нагреть пар диоксида углерода. Тепло, переданное потоку пара диоксида углерода на каждой ступени компрессора, можно удалять путем охлаждения либо парообразным рабочим телом, либо окружающим воздухом, чтобы снизить затраты на энергию, требующуюся для приведения в действие компрессора. Цикл повторяют в системе 12 цикла Брайтона.

В показанном воплощении парообразное рабочее тело из системы 76 цикла Ренкина также пропускают при теплообмене с горячей текучей средой из источника 88 тепла через нагреватель 77 для нагрева парообразного рабочего тела. Другими словами, тепло из источника 88 тепла используют для нагрева как пара диоксида углерода, так и парообразного рабочего тела посредством нагревателя 77. Более конкретно, тепло из источника 88 тепла используют сначала для нагрева пара диоксида углерода и затем для нагрева парообразного рабочего тела.

Система 76 цикла Ренкина дополнительно включает турбину 98, конденсатор 100, насос 102 и устройство 104 для разделения потока. Парообразное рабочее тело пропускают через турбину 98 для расширения парообразного рабочего тела и приведения в действие генератора 106, предназначенного для генерирования электроэнергии. Расширенное рабочее тело из турбины 98 пропускают через теплообменник 96 при теплообмене с возвратным потоком конденсированного рабочего тела из насоса 102.

После пропускания через турбину 98 парообразное рабочее тело пропускают через теплообменник 96 в конденсатор 100. Парообразное рабочее тело конденсируют до жидкого состояния, чтобы образовать конденсированное рабочее тело. Затем конденсированное рабочее тело перекачивают при относительно высоком давлении с помощью насоса 102 через третий теплообменник 96 в устройство 104 для разделения потока. Жидкое рабочее тело при повышенном давлении из насоса 102 нагревают в теплообменнике 96 вначале с помощью потока пара расширенного рабочего тела, поступающего в теплообменник 96 из турбины 98, а затем с помощью потока пара диоксида углерода, который также проходит через теплообменник 96. Повышение давления и повторное нагревание рабочего тела приводит к постепенному фазовому переходу из жидкого состояния в парообразное состояние.

В показанном воплощении устройство 104 для разделения потока разделяет поток рабочего тела из третьего теплообменника 96 на две части. Устройство 104 для разделения потока обеспечивает подачу одной части парообразного рабочего тела из третьего теплообменника 96 в нагреватель 77, и другую часть парообразного рабочего тела из теплообменника 96, подаваемую через теплообменник 94, подают в точку 108 выше по потоку относительно теплообменника 92. Рабочее тело дополнительно нагревают потоком пара диоксида углерода. Последнюю часть парообразного рабочего тела из теплообменника 96 смешивают в точке 108 с парообразным рабочим телом, подаваемым из нагревателя 77 в теплообменник 92. Цикл повторяют в системе 76 цикла Ренкина.

Хотя здесь проиллюстрированы и описаны только некоторые признаки изобретения, для специалиста в данной области техники понятны его различные модификации и изменения. Поэтому следует понимать, что прилагаемая формула изобретения охватывает все такие модификации и изменения, которые соответствуют истинной сущности изобретения.


КОМБИНИРОВАННАЯ ТЕПЛОВАЯ СИСТЕМА С ЗАМКНУТЫМ КОНТУРОМ ДЛЯ РЕКУПЕРАЦИИ ОТРАБОТАННОГО ТЕПЛА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
КОМБИНИРОВАННАЯ ТЕПЛОВАЯ СИСТЕМА С ЗАМКНУТЫМ КОНТУРОМ ДЛЯ РЕКУПЕРАЦИИ ОТРАБОТАННОГО ТЕПЛА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
КОМБИНИРОВАННАЯ ТЕПЛОВАЯ СИСТЕМА С ЗАМКНУТЫМ КОНТУРОМ ДЛЯ РЕКУПЕРАЦИИ ОТРАБОТАННОГО ТЕПЛА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 353.
25.08.2017
№217.015.caa9

Устройство секционного охлаждения и способ охлаждения сопловой лопатки турбины

Устройство секционного охлаждения для подачи охлаждающего потока в турбине с потоком газообразных продуктов сгорания содержит турбинную сопловую лопатку, дефлектор для охлаждающей среды и инжекционную пластину. Турбинная сопловая лопатка имеет вставку, расположенную в ее аэродинамической части,...
Тип: Изобретение
Номер охранного документа: 0002619955
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cae0

Способ очистки погружных мембран с использованием многоканальных устройств для подвода газа с открытым дном

Изобретение относится к очистке мембран. Способ очистки воздухом погружной мембраны, включающий регулирование параметров аэрации: между последовательными циклами фильтрации, обратной импульсной промывки или релаксации; в ходе цикла фильтрации или между циклом фильтрации и циклом обратной...
Тип: Изобретение
Номер охранного документа: 0002620056
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cbe6

Турбина, энергоустановка и способ модернизации наружного кожуха паровой турбины

Предложены турбина, энергоустановка, содержащая турбину, и способ модернизации наружного кожуха паровой турбины для повышения эффективности турбины и всей энергоустановки в целом. В одном варианте выполнения турбина содержит наружный кожух, имеющий канавки, выполненные с обеспечением...
Тип: Изобретение
Номер охранного документа: 0002620468
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc01

Удерживающее устройство и система осевого удержания для кольцевых уплотнений (варианты)

Изобретение относится к энергетике. Удерживающее устройство для поддержания в фиксированном осевом положении второго компонента ротационной машины, установленного в осевом направлении на первый компонент ротационной машины, содержит фиксирующий элемент, размеры и конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002620463
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ce33

Рабочее колесо турбомашины и турбомашина

Рабочее колесо турбомашины содержит основную часть, паз для размещения лопаток и паз для заводки лопаток. Основная часть рабочего колеса имеет первую поверхность и противоположную вторую поверхность, соединенные поверхностью по наружному диаметру, имеющей среднюю линию. Паз для размещения...
Тип: Изобретение
Номер охранного документа: 0002620622
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d189

Система и способ тестирования показателя работы паровой турбины

Изобретение относится к энергетике. Система тестирования показателя работы паровой турбины включает по меньшей мере одно компьютерное устройство, включающее нейронную сеть, сформированную с использованием динамической термодинамической модели паровой турбины и предварительных данных, собранных...
Тип: Изобретение
Номер охранного документа: 0002621422
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d26b

Система (варианты) и способ уплотнения вала

Группа изобретений относится к паровым турбинам, а именно к автономной уплотнительной системе для её вала. Предложены система и способ уплотнения вала для турбоустановки, содержащей секцию 110 турбины и расположенную ниже по потоку секцию. Система 100 уплотнения вала содержит по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002621425
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d2b2

Топливовоздушная форсунка (варианты ), камера сгорания для газотурбинного двигателя (варианты ) и способ работы топливовоздушной форсунки (варианты )

Изобретение относится к энергетике. Камера сгорания для газотурбинного двигателя имеет переднюю концевую часть, которая поддерживает по меньшей мере одну топливовоздушную форсунку. Каждая топливовоздушная форсунка содержит вспомогательную форсунку предварительного смешивания, содержащую...
Тип: Изобретение
Номер охранного документа: 0002621566
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d41b

Узел турбины, турбина и способ поддержки компонентов турбины

Изобретение относится к энергетике. Узел турбины содержит первую неподвижную конструкцию и вторую неподвижную конструкцию, расположенную радиально снаружи относительно первой неподвижной конструкции. Узел также содержит опорный элемент, расположенный в выемке второй неподвижной конструкции и...
Тип: Изобретение
Номер охранного документа: 0002622458
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.d45a

Газотурбинная энергетическая установка с рециркуляцией отработавших газов и способ управления указанной установкой

Изобретение относится к энергетике. Энергетическая установка включает рабочую текучую среду и рециркуляционную петлю. Энергетическая установка включает камеру сгорания, функционально соединенную с турбиной. Способ работы энергетической установки включает операции: рециркуляции по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002622140
Дата охранного документа: 13.06.2017
Показаны записи 241-250 из 296.
25.08.2017
№217.015.c6d0

Держатель уплотнения и сопловая лопатка для газовой турбины (варианты)

В настоящей заявке описан держатель уплотнения, используемый вокруг ряда отверстий в платформе сопловой лопатки турбины, предназначенных для прохождения воздуха. Держатель уплотнения может иметь внутреннюю поверхность, обращенную к платформе и имеющую выполненные на ней пазы, совмещенные с...
Тип: Изобретение
Номер охранного документа: 0002618805
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74a

Топливная форсунка с осевым потоком (варианты) и способ предварительного смешивания топлива и воздуха

Группа изобретений относится к топливным форсункам. Топливная форсунка с осевым потоком для газовой турбины содержит кольцевые каналы, предназначенные для доставки продуктов для сжигания. Кольцевой воздушный канал 62 предназначен для приема нагнетаемого компрессором воздуха. Смежно с осевым...
Тип: Изобретение
Номер охранного документа: 0002618799
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c757

Топливная форсунка, концевой узел топливной форсунки и газовая турбина

Изобретение относится к энергетике. Топливная форсунка для камеры сгорания содержит топочную трубу и кольцевой центральный элемент, расположенный концентрически в указанной топочной трубе. Указанный кольцевой центральный элемент проходит вдоль продольной оси топливной форсунки и по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002618801
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c75b

Термоуправляемый узел для газотурбинной системы (варианты) и способ управления каналом для потока охлаждающего воздуха

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй...
Тип: Изобретение
Номер охранного документа: 0002618791
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c8f4

Способ и устройство для отделения со при охлаждении с использованием сопла лаваля

Изобретение относится к отделению диоксида углерода от газового потока. Заявлены способ отделения диоксида углерода (CO) от газового потока и устройство отделения диоксида углерода (CO) от потока, содержащего CO. Способ включает охлаждение газового потока на стадии охлаждения с получением...
Тип: Изобретение
Номер охранного документа: 0002619312
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c99c

Способ нанесения алюминида титана и изделие с поверхностью из алюминида титана

Изобретение относится к способам нанесения покрытия из алюминида титана на металлическое изделие и к металлическому изделию с указанным покрытием. Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования...
Тип: Изобретение
Номер охранного документа: 0002619419
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.caa9

Устройство секционного охлаждения и способ охлаждения сопловой лопатки турбины

Устройство секционного охлаждения для подачи охлаждающего потока в турбине с потоком газообразных продуктов сгорания содержит турбинную сопловую лопатку, дефлектор для охлаждающей среды и инжекционную пластину. Турбинная сопловая лопатка имеет вставку, расположенную в ее аэродинамической части,...
Тип: Изобретение
Номер охранного документа: 0002619955
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cae0

Способ очистки погружных мембран с использованием многоканальных устройств для подвода газа с открытым дном

Изобретение относится к очистке мембран. Способ очистки воздухом погружной мембраны, включающий регулирование параметров аэрации: между последовательными циклами фильтрации, обратной импульсной промывки или релаксации; в ходе цикла фильтрации или между циклом фильтрации и циклом обратной...
Тип: Изобретение
Номер охранного документа: 0002620056
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cbe6

Турбина, энергоустановка и способ модернизации наружного кожуха паровой турбины

Предложены турбина, энергоустановка, содержащая турбину, и способ модернизации наружного кожуха паровой турбины для повышения эффективности турбины и всей энергоустановки в целом. В одном варианте выполнения турбина содержит наружный кожух, имеющий канавки, выполненные с обеспечением...
Тип: Изобретение
Номер охранного документа: 0002620468
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc01

Удерживающее устройство и система осевого удержания для кольцевых уплотнений (варианты)

Изобретение относится к энергетике. Удерживающее устройство для поддержания в фиксированном осевом положении второго компонента ротационной машины, установленного в осевом направлении на первый компонент ротационной машины, содержит фиксирующий элемент, размеры и конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002620463
Дата охранного документа: 25.05.2017
+ добавить свой РИД