×
20.05.2015
216.013.4dac

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ЛЬДА

Вид РИД

Изобретение

№ охранного документа
0002551398
Дата охранного документа
20.05.2015
Аннотация: Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1) внутри. Для реализации способа рабочей средой (1) оболочки воздействуют на шток пневмоцилиндра (2). Штоком перемещают одну из торцевых стенок металлического прямоугольного резонатора (3), предварительно возбужденного электромагнитными колебаниями. По резонансной частоте резонатора (3) определяют толщину льда. Технический результат: повышение точности измерения толщины льда. 1 ил.
Основные результаты: Способ определения толщины льда, основанный на использовании взаимодействия льда и полой герметичной цилиндрической эластичной оболочки внутри с рабочей средой, отличающийся тем, что воздействуют рабочей средой оболочки на шток пневмоцилиндра, штоком перемещают одну из торцевых стенок металлического прямоугольного резонатора, предварительно возбужденного электромагнитными колебаниями, и по резонансной частоте резонатора определяют толщину льда.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами и рыболовстве.

Известно двухканальное фазоизмерительное устройство, реализующее способ измерения толщины диэлектрика (В.А. Викторов и др. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, с.57-58), в котором контролируемый материал размещен между проводниками открытой двухпроводной линии. Согласно данному устройству разность фаз в измерительном и опорном каналах является функцией толщины материала.

Недостатком этого известного устройства является конструктивная сложность, связанная с созданием двухканальной системы.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения толщины льда и устройство для его осуществления (RU 2422736 C1, 27.06.2011). Согласно этому изобретению в водоем перед льдообразованием устанавливают полую герметичную цилиндрическую эластичную оболочку, заполненную незамерзающей рабочей средой под давлением выше атмосферного. В период льдообразования измеряют давление в полости эластичной оболочки (полость оболочки соединена с манометром) и при изменении давления в полости оболочки из-за обжатия ее части с помощью тарировочного графика определяют толщину льда.

Недостатком этого известного технического решения низкая точность измерения толщины льда.

Техническим результатом заявляемого решения является повышение точности измерения толщины льда.

Технический результат достигается тем, что в способе определения толщины льда, основанном на использовании взаимодействия льда и полой герметичной цилиндрической эластичной оболочки внутри с рабочей средой, воздействуют рабочей средой оболочки на шток пневмоцилиндра, штоком перемещают одну из торцевых стенок металлического прямоугольного резонатора, предварительно возбужденного электромагнитными колебаниями, и по резонансной частоте резонатора определяют толщину льда.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что перемещение одной из торцевых стенок прямоугольного металлического резонатора посредством штока пневмоцилиндра, обусловленное воздействием на пневмоцилиндр рабочей среды полой герметичной цилиндрической эластичной оболочки при воздействии на нее льда, дает возможность определить толщину льда по резонансной частоте резонатора.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения толщины льда на основе проведения измерения резонансной частоты прямоугольного металлического резонатора с перемещающейся торцевой стенкой при воздействии на нее штока пневмоцилиндра, управляемого рабочей средой полой герметичной цилиндрической эластичной оболочкой, контактирующей с контролируемым в водоеме льдом с желаемым техническим результатом, т.е. расширением функциональной возможности.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит полую герметичную цилиндрическую эластичную оболочку 1, пневмоцилиндр 2, металлический прямоугольный резонатор с перемещающейся торцевой стенкой 3, микроволновой генератор 4, детектор 5, соединенный выходом с измерителем амплитудно-частотных характеристик 6. На чертеже цифрой 7 обозначен водоем.

Суть предлагаемого способа заключается в следующем. Образование льда на поверхности водоема, как известно, обладает свойством оказать воздействие (давление) на соприкасающийся с поверхностью воды объект. В предлагаемом техническом решении это свойство льдообразования используется для определения толщины льда.

Допустим, что на поверхности водоема установлена полая герметичная цилиндрическая эластичная оболочка, которая заполнена незамерзающей рабочей средой (газ или жидкость, например). При отсутствии льда на поверхности воды, силы, действующие как со стороны воды, так и со стороны цилиндрической оболочки, можно считать равными, и оболочка не претерпевает обжатия со стороны водной поверхности.

Образование льда на поверхности воды в этом случае приведет к обжатию эластичной оболочки и изменение давления среды в оболочке будет определяться в основном изменением величины толщины льда. В силу этого для изменения давления в оболочке в зависимости от изменения толщины льда можно записать

,

где k - коэффициент пропорциональности, p - давление газа в оболочке, h - толщина (высота) льда в водоеме.

Согласно предлагаемому техническому решению газ (рабочая среда) из оболочки далее поступает по трубке в пневмоцилиндр, представляющий собой цилиндр со штоком. При поступлении газа в пневмоцилиндр через его патрубок шток будет перемещаться по внутренней поверхности пневмоцилиндра на некоторое расстояние. Для изменения перемещения штока в зависимости от изменения давления газа, поступающего в пневмоцилиндр, можно принимать

,

где l - длина перемещения штока, m - коэффициент пропорциональности.

Далее перемещение штока воздействует на перемещающуюся торцевую стенку прямоугольного резонатора, который предварительно возбужден электромагнитными колебаниями. Как известно, перемещение торцевой стенки резонатора может привести к изменению его собственной резонансной частоты. В этом случае изменение резонансной частоты резонатора в зависимости от изменения длины перемещения штока может быть записано как

,

где f - резонансная частота резонатора, s - коэффициент пропорциональности. В рассматриваемом случае для установления зависимости резонансной частоты резонатора от изменения толщины льда необходимо произвести совместное решение выше приведенных трех уравнений.

Для этого, умножим, сначала левую и правую части первого уравнения на dh/kp. В результате будем иметь:

.

После интегрирования получаем:

.

Следовательно, для p будем иметь

.

Аналогичным образом, умножим правую и левую части второго уравнения на dp/ml. В результате получим

.

После интегрирования будем иметь

.

Следовательно,

.

Отсюда

.

Если умножить правую и левую части третьего уравнения на dl/sfp, то получим, что

.

После интегрирования будем иметь

.

Следовательно,

.

Отсюда

.

Из последнего уравнения вытекает, что по измерению резонансной частоты резонатора, можно судить об изменении толщины льда в водоеме. Коэффициенты пропорциональностей k, m и s могут быть выбраны из экспериментальных результатов.

Устройство, реализующее предлагаемый способ, работает следующим образом. В период льдообразования происходит обжатие части эластичной цилиндрической оболочки 1 при переходе воды из жидкой фазы в твердую, причем чем больше льда, тем больше область обжатия. Вследствие этого давление рабочей среды (газа) в оболочке увеличивается, принимая различные значения. Согласно данному техническому решению полость оболочки соединяется с пневмоцилиндром 2, представляющим собой цилиндр со штоком. Поступление газа с повышенным давлением в пневмоцилиндр обусловливает перемещение штока, который, в свою очередь, жестко соединен с перемещающейся торцевой стенкой прямоугольного металлического резонатора 3. Собственная резонансная частота резонатора ввиду перемещения его торцевой стенки изменяется. Предварительно резонатор электромагнитными колебаниями микроволнового генератора 4 возбуждается. В рассматриваемом случае для наблюдения факта резонанса и изменения резонансной частоты данного резонатора, с его выхода сигнал, посредством детектора 5, переносится в измеритель амплитудно-частотной характеристики 6. С помощью последнего можно получить картину резонанса в резонаторе и изменение резонансной частоты резонатора. При этом увеличение толщины льда (повышение давления рабочей среды в эластичной оболочке) приведет к увеличению резонансной частоты резонатора и наоборот.

Оболочку в водоеме 7 необходимо установить перед льдообразованием с возможностью плавания. В полости оболочки давление, например, газа должно быть выше атмосферного (при нулевой толщине льда). Высота оболочки больше ожидаемой толщины и оболочка заполняется незамерзающей рабочей средой.

Цилиндрическую оболочку можно выполнить из морозостойкой армированной резины. Оболочка снабжена поплавком, балластным грузом и запорным клапаном для заполнения его рабочей средой. Поплавок выполнен из малотеплопроводного материала, например пенопласта, что обеспечивает изоляцию полости оболочки от колебаний температуры наружного воздуха. Поверхность поплавка, соприкасающаяся с водой (льдом) покрывается гидроизоляционным слоем, выполненным из материала, исключающего возможность примерзания поплавка ко льду.

Таким образом, согласно предлагаемому способу на основе измерения резонансной частоты прямоугольного металлического резонатора с перемещающейся торцевой стенкой можно обеспечить повышение точности измерения толщины льда.

Предлагаемый способ успешно может быть использован в льдотехнике при расчетах ледовых нагрузок на опоры мостов.

Способ определения толщины льда, основанный на использовании взаимодействия льда и полой герметичной цилиндрической эластичной оболочки внутри с рабочей средой, отличающийся тем, что воздействуют рабочей средой оболочки на шток пневмоцилиндра, штоком перемещают одну из торцевых стенок металлического прямоугольного резонатора, предварительно возбужденного электромагнитными колебаниями, и по резонансной частоте резонатора определяют толщину льда.
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ЛЬДА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 282.
10.09.2014
№216.012.f365

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002528131
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f3

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего...
Тип: Изобретение
Номер охранного документа: 0002528274
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fe4b

Способ позиционного управления газовой турбиной

Изобретение относится к области позиционного управления газовой турбиной. Технический результат изобретения - обеспечение позиционного управления газовой турбиной с получением необходимой динамики и точности позиционирования. Газ подают на лопатки турбины до достижения точки позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002530955
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe96

Объемный расходомер

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока,...
Тип: Изобретение
Номер охранного документа: 0002531030
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe98

Способ измерения расхода среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной...
Тип: Изобретение
Номер охранного документа: 0002531032
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9a

Способ измерения расхода газа

Изобретение относится к области автоматики и может быть использовано для измерения расхода газа с повышенной чувствительностью. Способ измерения расхода газа, состоящий в том, что создают колебания измеряемого газового потока струйным элементом с частотой, пропорциональной его расходу, затем...
Тип: Изобретение
Номер охранного документа: 0002531034
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9b

Устройство для определения высоты полого древесного цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного...
Тип: Изобретение
Номер охранного документа: 0002531035
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0259

Способ отказоустойчивого умерения крена судна на подводных крыльях

Изобретение относится к области судостроения, а именно к автоматическому управлению угловым движением судна. Для отказоустойчивого умерения крена судна на подводных крыльях используют: блок датчиков угла поворота закрылков, датчик угла крена, блок дифференцирования, блок приводов закрылков,...
Тип: Изобретение
Номер охранного документа: 0002531999
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.025a

Отказоустойчивая система автоматического управления движением судна

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла...
Тип: Изобретение
Номер охранного документа: 0002532000
Дата охранного документа: 27.10.2014
Показаны записи 41-50 из 191.
10.09.2014
№216.012.f365

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002528131
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f3

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего...
Тип: Изобретение
Номер охранного документа: 0002528274
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fe4b

Способ позиционного управления газовой турбиной

Изобретение относится к области позиционного управления газовой турбиной. Технический результат изобретения - обеспечение позиционного управления газовой турбиной с получением необходимой динамики и точности позиционирования. Газ подают на лопатки турбины до достижения точки позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002530955
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe96

Объемный расходомер

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока,...
Тип: Изобретение
Номер охранного документа: 0002531030
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe98

Способ измерения расхода среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной...
Тип: Изобретение
Номер охранного документа: 0002531032
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9a

Способ измерения расхода газа

Изобретение относится к области автоматики и может быть использовано для измерения расхода газа с повышенной чувствительностью. Способ измерения расхода газа, состоящий в том, что создают колебания измеряемого газового потока струйным элементом с частотой, пропорциональной его расходу, затем...
Тип: Изобретение
Номер охранного документа: 0002531034
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9b

Устройство для определения высоты полого древесного цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного...
Тип: Изобретение
Номер охранного документа: 0002531035
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0259

Способ отказоустойчивого умерения крена судна на подводных крыльях

Изобретение относится к области судостроения, а именно к автоматическому управлению угловым движением судна. Для отказоустойчивого умерения крена судна на подводных крыльях используют: блок датчиков угла поворота закрылков, датчик угла крена, блок дифференцирования, блок приводов закрылков,...
Тип: Изобретение
Номер охранного документа: 0002531999
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.025a

Отказоустойчивая система автоматического управления движением судна

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла...
Тип: Изобретение
Номер охранного документа: 0002532000
Дата охранного документа: 27.10.2014
+ добавить свой РИД