×
20.05.2015
216.013.4d92

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002551372
Дата охранного документа
20.05.2015
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство может быть применено для определения технологических параметров бумажного, картонного и т.п. полотна в процессе его производства. Технический результат - повышение точности измерения. Устройство для измерения физических параметров диэлектрического листового материала содержит волноводный прямоугольный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок. В полости каждой из частей резонатора, в котором возбуждены колебания типа H, n=1, 2, …, у ее короткозамкнутого торца установлена диэлектрическая вставка с тем же поперечным размером, что и у резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Резонатор может быть снабжен запредельным волноводом, образованным совокупностью двух параллельных друг другу и листовому материалу металлических полос, каждая из которых подсоединена к свободному краю соответствующей половины расщепленной полости. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство может быть применено для определения технологических параметров бумажного, картонного и т.п. полотна в процессе его производства.

Известны различные устройства для определения физических свойств веществ, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков, содержащих контролируемое вещество (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука, 1989. С.47-60). Известно, в частности, устройство для измерения толщины, влажности и других свойств листового диэлектрического материала на основе объемного СВЧ-резонатора (US 3458808, 29.07.1969). Здесь полость цилиндрического резонатора расщеплена на две идентичные части вдоль оси резонатора так, что контролируемый слой листового материала, например бумаги, может свободно перемещаться через нее.

Известно также техническое решение (US 4297874, 03.11.1981), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Это устройство-прототип содержит волноводный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости частей. В щели между ними параллельно этой плоскости размещен листовой диэлектрический материал. К резонатору подсоединены с помощью элементов связи генератор электромагнитных колебаний и вторичный преобразователь. Недостатком данного устройства является его невысокая точность при проведении измерений в реальных условиях, когда контролируемый лист имеет поперечный люфт, например, при его движении. При этом этот лист смещается относительно картины распределения электрического поля стоячей волны в резонаторе и, как следствие, изменяется значение информативного параметра - резонансной частоты электромагнитных колебаний.

Техническим результатом изобретения является повышение точности измерения при возможности поперечного смещения контролируемого листа в процессе измерения.

Технический результат достигается тем, что предлагаемое устройство для измерения физических параметров диэлектрического листового материала содержит волноводный прямоугольный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок. При этом в полости каждой из частей резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, у ее короткозамкнутого торца установлена диэлектрическая вставка с тем же поперечным размером, что и у резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Резонатор может быть снабжен запредельным волноводом, образованным совокупностью двух параллельных друг другу и листовому материалу металлических полос, каждая из которых подсоединена к свободному краю соответствующей половины расщепленной полости.

Предлагаемое устройство поясняется чертежами на фиг.1, фиг.2 и фиг.3.

На фиг.1 изображено поперечное сечение прямоугольного волновода с двумя диэлектрическими вставками и распределение в нем электрического поля.

На фиг.2 изображено поперечное сечение волноводного резонатора с контролируемым листовым материалом.

На фиг.3 приведена функциональная схема устройства.

На фигурах показаны прямоугольный волновод 1, диэлектрические вставки 2 и 3, резонатор 4, листовой материал 5, открытая поверхность 6, щель 7, металлическая полоса 8, элементы связи 9 и 10, генератор электромагнитных колебаний 11, электронный блок 12.

Устройство работает следующим образом.

Применение датчика на основе волноводного резонатора, образованного совокупностью двух частей его расщепленной полости, обеспечивает измерение параметров листовых материалов независимо от поперечного положения движущегося листа в пределах щели.

Для этой цели необходимо иметь однородное распределение энергии электромагнитного поля в поперечном сечении (щели), содержащей такой лист (фиг.1). Такое приблизительно однородное распределение обеспечивается в резонаторе на основе прямоугольного волновода 1 (на фиг.1 показано распределение амплитуды электрического поля Е). У противоположных широких сторон поперечного сечения прямоугольного волновода 1 вдоль его длины размещены диэлектрические вставки 2 и 3 с толщиной d и диэлектрической проницаемостью ε. В центральной свободной части поперечного сечения волновода с исходным типом волн H10 существует поле волны типа TEM (VanKoughnett A.L., Wyslouzil W. A waveguide ТЕМ mode exposure chamber // Journal of Microwave Power. 1972, vol.7, №4, pp.381-283). Эти волны являются поперечными (ТЕМ), если выполнено следующее условие:

где λ - длина волны в свободном пространстве на используемой рабочей частоте.

Волноводный прямоугольный резонатор, выполненный на основе такого волновода в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, может служить в качестве датчика для измерений некоторых технологических параметров, в частности физических параметров движущихся листовых материалов.

В этом случае имеет место почти равномерное распределение электромагнитной энергии в свободном пространстве волновода, а также в рассматриваемом резонаторе на его основе, которое можно считать таким же и в присутствии контролируемого листа в пределах щели. В качестве диэлектрических вставок могут применяться различные материалы: плексиглас (ε=2.59), корунд (ε=10.07) и др. Так, требуемый режим работы с электромагнитном полем TEM-типа в центральной части волновода обеспечивается на частоте 2450 МГц (λ=12,45 см) при следующих параметрах: размеры поперечного сечения 7×3,5 см2; ε=7; d=1,3 см. Можно считать, что такое же равномерное распределение поля в этой области имеет место и при малых изменениях частоты генератора или при введении диэлектрического листа в рассматриваемое свободное пространство, незначительно изменяя электрическое поле стоячей волны в резонаторе.

В данном резонаторе возбуждают колебания типа H10n, n=1, 2, …, низшим из которых является H101 и которому соответствует наименьшее значение резонансной частоты fp электромагнитных колебаний данного резонатора. При этом первые два индекса (1 и 0) соответствуют числу полуволн поля стоячей электромагнитной волны в волноводном резонаторе в его поперечном сечении (фиг.1), а третий индекс n=1, 2, … - числу полуволн поля стоячей волны вдоль продольной оси данного прямоугольного резонатора (т.е. вдоль плоскости листового материала). Однородное распределение энергии электромагнитного поля в таком волноводе и резонаторе на его основе приводит к независимости результатов измерений от положения листа центральной части в поперечном направлении.

В прямоугольном резонаторе, в отличие от волновода, имеет место картина стоячей волны с наличием максимумов и минимумов электрического и магнитного полей по объему резонатора. При этом вдоль длины L резонатора в продольной плоскости умещается nλ/2 полуволн, т.е. L=nλ/2, n=1, 2, …. С учетом этого соотношение (1) для рассматриваемого резонатора записывается так:

откуда находим

Для основного типа колебаний H101 при n=1 формула (3) принимает вид

На фиг.2 показано поперечное сечение расщепленного волноводного прямоугольного резонатора 4 с листовым диэлектрическим материалом 5 между открытыми поверхностями 6 в пределах щели 7. В обеих частях полости резонатора 4 имеются диэлектрические вставки 2 и 3 с тем же поперечным размером, что и у резонатора, а продольный размер каждой вставки имеет величину , n=1, 2, …, где в данном случае L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Резонатор может быть снабжен запредельным волноводом, образованным совокупностью двух металлических полос 8, параллельных друг другу и листовому материалу металлических полос. Каждая из металлических полос 8 подсоединена к свободному краю соответствующей половины расщепленной полости. Наличие запредельного волновода препятствует излучению электромагнитных волн за пределы полости резонатора и тем самым обеспечивает высокое значение добротности резонатора даже при относительно большом расстоянии между половинами расщепленной полости. Выбор размеров металлических листов 8, образующих запредельный волновод, согласуется с размерами полости резонатора 4: критическая частота fкр возбуждения электромагнитных волн в таком запредельном волноводе должна быть выше максимального значения резонансной частоты fpmax резонатора: fкр>fpmax. Положение листа в пределах щели 7 вдоль силовых линий электрического поля обеспечивает максимальную чувствительность датчика. Такое же равномерное распределение энергии существует и при изменении толщины листа, его влагосодержания и плотности, если толщина a листа мала по сравнению с высотой (т.е. общей длиной расщепленной стенки) l резонатора (a<<l). Можно показать, что зависимость резонансной частоты fp от a, диэлектрической проницаемости εm выражается так: fp/fp0≈1-aм(W)-1]/l. Здесь fp0 - начальное значение fp (в отсутствие листа), l - длина расщепленной стенки. Измеряя текущее значение fp, можно определить толщину a листа или диэлектрическую проницаемость εм и связанные с ней функционально значения плотности или влагосодержания листового материала.

Величина εм зависит от плотности, влагосодержания материала. Каждый из этих физических параметров может быть измерен, если толщина а листа неизменна. Определить a и (или) W, а также массу единицы площади М, т.е. произвести многопараметровые измерения, можно путем измерения резонансной частоты fp и амплитуды A резонансного импульса или двух (или более) резонансных частот различных типов колебаний резонатора и их соответствующей функциональной обработки. Такие измерения необходимо производить, в частности, в целлюлозно-бумажной промышленности. Так, например, движущийся бумажный лист может иметь ширину 4300 мм и люфт ±10 мм в направлении, поперечном движению листа. Рассматриваемый подход применим также, когда требуется обеспечить независимость результатов измерений каждого из этих параметров от других возмущающих факторов.

На фиг.3 показана схема устройства с датчиком на основе волноводного прямоугольного резонатора 4 с расщепленной полостью, содержащей движущийся диэлектрический листовой материал 5 в пределах щели 7 резонатора 4. Диэлектрические вставки 2 и 3 расположены в соответствующих частях расщепленной полости. Для обеспечения бесконтактных измерений физических параметров движущегося листового материала 5 этот резонатор снабжен запредельным волноводом, что препятствует излучению электромагнитных волн за пределы полости резонатора. Контролируемый листовой материал 5 расположен между открытыми поверхностями 6 полости в пределах щели 7 вдоль направления силовых линий электрического поля, что соответствует максимуму чувствительности данного резонаторного датчика. Элементы связи 9 и 10 служат для возбуждения электромагнитных колебаний в полости резонатора с помощью генератора электромагнитных колебаний 11 и его подсоединения к электронному блоку 12 для измерения резонансной частоты fp (а также и амплитуды A резонансного импульса или двух (или более) резонансных частот различных типов колебаний резонатора при отмеченных выше многопараметровых измерениях) данного резонатора.

Таким образом, предлагаемое устройство обеспечивает более высокую точность бесконтактных измерений физических параметров диэлектрического листового материала при возможности его поперечных смещений, в том числе в процессе движения. Данное устройство обеспечивает независимость результатов измерений от поперечного положения движущегося листового материала.


УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 281-290 из 304.
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
Показаны записи 221-228 из 228.
21.11.2019
№219.017.e432

Способ измерения положения границы раздела двух веществ в резервуаре

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ....
Тип: Изобретение
Номер охранного документа: 0002706455
Дата охранного документа: 19.11.2019
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД