×
20.05.2015
216.013.4d7f

Результат интеллектуальной деятельности: РЕЛЯТИВИСТСКИЙ МАГНЕТРОН

Вид РИД

Изобретение

Аннотация: Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения. Релятивистский магнетрон содержит многорезонаторный анодный блок (1), коаксиальный с ним взрывоэмиссионный катод (3), внешнюю магнитную систему (4), излучающую антенну (6), расположенную во внешнем канале связи (5) на расстоянии nλ+λ/4 от одного из резонаторов (2), и разрядник (7), расположенный на расстоянии kλ/4 от оси антенны (6), где n - целое число; λ - длина волны в волноводе; k - нечетное число. Технический результат - увеличение мощности выходных СВЧ-импульсов, повышение стабильности характеристик генерируемых импульсов, уменьшение размеров системы. 2 ил.
Основные результаты: Релятивистский магнетрон, содержащий многорезонаторный анодный блок, коаксиальный с ним взрывоэмиссионный катод, внешнюю магнитную систему, излучающую антенну, расположенную во внешнем канале связи на расстоянии nλ+λ/4 от одного из резонаторов, и разрядник, расположенный на расстоянии kλ/4 от оси антенны, где n - целое число; λ - длина волны в волноводе; k - нечетное число.

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации коротких сверхмощных СВЧ-импульсов. Использование излучения СВЧ для таких применений, как тестирование радиоэлектронной аппаратуры, дальняя радиолокация с высоким пространственным разрешением, стерилизация и др. требует создания приборов максимальной мощности.

Известно устройство - релятивистский магнетрон, состоящий из многорезонаторного анодного блока с одним или несколькими волноводными выводами мощности [Винтизенко И.И., Новиков С.С. Релятивистские магнетронные СВЧ-генераторы с внешней связью резонаторов. Журнал технической физики, 2010, том 80, вып. 11, с. 95-104]. Коаксиально многорезонаторному анодному блоку установлен катод, связанный посредством катододержателя с отрицательным выводом источника питания. Снаружи анодного блока расположены катушки магнитной системы. В качестве источников питания релятивистских магнетронов используются сильноточные электронные ускорители или линейные индукционные ускорители. В таких приборах анодный блок заземлен, а на катод подается импульс отрицательной полярности длительностью 50-1000 нс, амплитудой до 1000 кВ. Катод выполняется из металла или графита и работает в режиме взрывной электронной эмиссии. Ток, снимаемый с катода, может достигать десятков килоампер. В скрещенных радиальном электрическом поле между катодом и анодным блоком и аксиальном магнитном поле, создаваемом магнитной системой, электроны, эмитированные под действием взрывной электронной эмиссии, осуществляют движение в двух направлениях. Как в классическом магнетроне электроны, вращаясь азимутально в «спицах», отдают потенциальную энергию в энергию СВЧ-излучения и осуществляют радиальный дрейф к анодному блоку. Релятивистский магнетрон имеет один или несколько волноводных выводов мощности из резонаторов анодного блока, проходящих между катушками магнитного поля, выполненных в виде пары Гельмгольца. Выводы СВЧ-мощности связаны между собой посредством одного или нескольких волноводных каналов связи.

Канал связи запитывается от резонаторов релятивистского магнетрона с двух сторон бегущими СВЧ-волнами. В результате в течение импульса излучения образуется стоячая электромагнитная волна. Для анодного блока с числом резонаторов N/2=р, где р - четное число, длина канала связи, должна составлять mλ+λ/2, где m - целое число. В этом случае поступающая от противоположного резонатора волна окажется в фазе с колебаниями в резонаторе (для анодного блока с указанным числом резонаторов колебания в противоположно расположенных резонаторах противофазны). Для того чтобы антенна, расположенная в канале связи, эффективно излучала в течение действия импульса СВЧ-излучения, она должна находиться в пучности стоячей волны, т.е. на расстоянии qλ/2 от резонатора, где q - целое число.

Для анодного блока с числом резонаторов N/2=р, где р - нечетное число (колебания противоположных резонаторов синфазны) длина внешнего канала связи должна быть mλ, где m - целое число. Для расположения антенны в пучности стоячей волны она должна находиться во внешнем канале связи на расстоянии qλ/2 (q - целое число) от одного из резонаторов.

По сравнению с релятивистским магнетроном с одним выводом СВЧ-мощности применение каналов связи позволяет увеличить эффективность работы прибора, улучшить спектральные характеристики СВЧ-излучения, повысить стабильность амплитудно-временных характеристик генерируемых импульсов. Выходная мощность релятивистских магнетронов с внешними каналами связи составляет 200 - 500 МВт при длительности импульса излучения от десятков до сотен наносекунд.

Известно также устройство релятивистский магнетрон, к которому подключено устройство СВЧ-компрессии (СВЧ-компрессор) [Диденко А.Н., Винтизенко И.И., Мащенко А.И. и др. Резонансная компрессия СВЧ-импульсов на выходе релятивистского магнетрона. Доклады Академии Наук, 1999, т. 366, №5, с. 619-621]. Устройство состоит из многорезонаторного анодного блока с одним выводом мощности. Коаксиально многорезонаторному анодному блоку установлен катод, связанный посредством катододержателя с отрицательным выводом источника питания. Снаружи анодного блока расположены катушки магнитной системы. К выводу мощности релятивистского магнетрона посредством волноводного тракта или ферритового вентиля подключен СВЧ-компрессор. СВЧ-компрессор состоит из СВЧ-резонатора, СВЧ-разрядника, диафрагмы с отверстием связи, нагрузки и излучающей антенны вывода электромагнитного излучения в свободное пространство. Принцип работы компрессора основан на накоплении высокочастотной энергии в резонаторе от импульсного СВЧ-источника и быстром ее выводе в виде более коротких и мощных СВЧ-импульсов, чем поступающие в резонатор [Диденко А.Н., Юшков Ю.Г. Мощные СВЧ-импульсы наносекундной длительности. М.: Энергоатомиздат, 1984. 112 с.]. Пиковая мощность излучения может быть увеличена в W раз в соответствии с соотношением

W = ηк t1/t2,

где ηк - КПД устройства компрессии,

t1 и t2 - длительности импульсов на входе и выходе компрессора соответственно. Указанное устройство принимаем за прототип.

Данный метод основан на накоплении энергии в высокодобротном резонаторе, где интенсивности полей могут многократно превышать интенсивность поля в исходном импульсе и ее последующем быстром выводе в нагрузку с помощью разрядника (коммутатора), модулирующего добротность резонатора. Для переключения резонатора в режим вывода СВЧ-энергии создается высоковольтный разряд с высокой концентрацией электронов. Появление плазмы приводит к резкому изменению картины стоячих волн, что обеспечивает быстрый вывод энергии из резонатора в антенну. Разряд может создаваться как в кварцевой трубке, так и непосредственно в объеме резонатора. При этом плазма может образовываться непосредственно под действием электромагнитных полей (самопробой) либо инициироваться внешним источником высокого напряжения.

На основе этого метода создана экспериментальная установка. Релятивистский магнетрон работает на частоте 2840 МГц и имеет мощность излучения до 200 МВт при длительности импульсов ~ 120 нс и частоте повторения 10 Гц. Компрессор изготовлен из волноводов сечением 7,2×3,4 см и представляет собой двойной волноводный тройник с симметричными короткозамкнутыми боковыми плечами. Возбуждение резонансной системы компрессора осуществляется через отверстие связи в широкой стенке волновода. Вывод энергии производится через Н-плечо тройника после срабатывания в режиме самопробоя газоразрядного СВЧ-коммутатора, расположенного от короткозамкнутой стенки на расстоянии четверти длины волны в волноводе. Минимальная длительность сформированных импульсов определяется временем двойного пробега волны с групповой скоростью вдоль одного из плеч тройника.

В процессе исследований релятивистского магнетрона с СВЧ-компрессором было установлено, что длительность процесса накопления энергии в резонаторе зависит от длины входного волноводного тракта между релятивистским магнетроном и компрессором. При длине тракта, равной 3 м, повышение напряженности поля в резонаторе продолжалось не более 30 нс. Примерно через такое же время во входных СВЧ-импульсах, регистрируемых в тракте от РМ, начинался спад амплитуды и сильная амплитудно-частотная модуляция. После срабатывания коммутатора на выходе компрессора регистрировались импульсы с пиковой мощностью до 480 МВт и длительностью ~ 5 нс на уровне половинной мощности. В этом случае импульсная мощность магнетрона не превышала 120 МВт.

После увеличения длины волноводного тракта до 10 м длительность импульсов от магнетрона в тракте и процесс возбуждения резонатора достигли 120 нс. Когда включался разрядник компрессора, из резонатора выводились СВЧ-импульсы длительностью ~ 5 нс с пиковой мощностью до 1100 МВт, при этом мощность выходных импульсов релятивистского магнетрона составляла 180 МВт.

Анализ результатов работы релятивистского магнетрона показал, что при питании резонатора СВЧ-компрессора от релятивистского магнетрона, как и от обычного классического магнетрона, требуется организовывать между ними определенную связь и уменьшать отраженную от диафрагмы резонатора волну в начальный период его возбуждения для эффективного затягивания частоты генератора высокодобротным накопительным резонатором компрессора. Это можно сделать при использовании развязывающих устройств: длинного волноводного тракта или включением в цепь связи между магнетроном и компрессором ферритового вентиля, позволившего устранить отраженную волну.

Таким образом, в данном устройстве осуществляется компрессии СВЧ-импульсов на выходе релятивистского магнетрона с увеличением мощности в 6 раз при частоте следования импульсов 10 Гц. Однако использование длинного (10 м) волноводного тракта приводило к значительным весогабаритным показателям установки, дополнительным потерям энергии при транспортировке СВЧ-энергии от релятивистского магнетрона до СВЧ-компрессора. Использование же ферритового вентиля снижало надежность устройства, поскольку используемый дорогостоящий промышленный вентиль не был рассчитан на работу с импульсами СВЧ-излучения мощностью в сотни мегаватт и быстро выходил из строя.

Задачей предлагаемого изобретения является увеличение мощности выходных СВЧ-импульсов релятивистского магнетрона, повышение стабильности характеристик генерируемых импульсов, уменьшение размеров и стоимости системы.

Технический результат заключается в уменьшении потерь СВЧ-энергии при компрессии, устранении элементов, создающих отраженные волны, увеличении надежности и снижении стоимости устройства за счет удаления из схемы развязывающих элементов, таких как волновод или ферритовый вентиль.

Указанный результат достигается тем, что релятивистский магнетрон с внешним каналом связи содержит многорезонаторный анодный блок с расположенным на оси взрывоэмиссионным катодом, внешнюю магнитную систему. Противоположные резонаторы анодного блока связаны волноводным внешним каналом связи. От прототипа он отличается тем, что во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число, λ - длина волны в волноводе) от одного из резонаторов установлена излучающая антенна и на расстоянии kλ/4 (k - нечетное число) от оси антенны расположен разрядник.

В предлагаемом устройстве внешний канал связи между резонаторами анодного блока исполняет роль резонатора СВЧ-компрессора. Роль диафрагмы с отверстием связи выполняет щель связи в стенках резонаторов анодного блока. В приборе-прототипе СВЧ-компрессор представлял собой отдельное устройство, связанное с релятивистским магнетроном длинным волноводным трактом или ферритовым вентилем.

Изобретение иллюстрируется фиг.1 и фиг.2. На фиг.1 показан релятивистский магнетрон, который имеет многорезонаторный анодный блок 1 с резонаторами 2. Количество резонаторов равно N/2=р, где р=4 - четное число. Коаксиально анодному блоку 1 установлен взрывоэмиссионный катод 3. Резонаторы 2 анодного блока 1 соединены между собой внешним каналом связи 5. Магнитная система 4 создает магнитное поле. Катод 3 с помощью катододержателя (на фиг.1 и фиг.2 не показан) связан с высоковольтным фланцем источника питания (на фиг.1 и фиг.2 не показан), от которого подается отрицательный импульс напряжения. В волноводном канале связи 5 для анодного блока 1 с числом резонаторов N/2=р, где р - четное число во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов 2 установлена излучающая антенна 6 и на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Расстояние между осью антенны до противоположного резонатора составляет mλ+λ/4 (m - целое число). Таким образом, полная дина тракта между противоположными резонаторами составляет (n+m)λ+λ/2. В этом случае СВЧ-волны, пришедшие от противоположных резонаторов, окажутся в фазе с колебаниями в резонаторах.

Для анодного блока с числом резонаторов N/2=р, где р=3 - нечетное число (фиг.2) во внешнем канале связи 5 на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов 2 установлена излучающая антенна 6 и на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Расстояние между осью антенны до противоположного резонатора составляет mλ-λ/4 (m - целое число). Таким образом, полная дина тракта между противоположными резонаторами составляет (n+m)λ. В этом случае СВЧ-волны, пришедшие от противоположных резонаторов, окажутся в фазе с колебаниями в резонаторах.

Предлагаемый релятивистский магнетрон содержит, как и прототип, многорезонаторный анодный блок 1 с резонаторами 2, связанными внешним каналом 5. Коаксиально анодному блоку установлен взрывоэмиссионный катод 3. Магнитная система 4 создает магнитное поле. Во внешнем канале связи 5 установлена излучающая антенна 6. Однако ее место расположения кардинально отличается от ее расположения в магнетронах с внешним каналом связи (прибор-аналог 1). В предлагаемом устройстве излучающая антенна установлена во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов (в приборе аналоге 1 антенна установлена на расстоянии nλ+λ/2). На расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Длина канала связи соответствует длине канала связи в приборе аналоге и зависит от количества резонаторов анодного блока (N/2 - четное или нечетное число).

Предлагаемое устройство за счет использования внешнего канала связи в качестве резонатора СВЧ-компрессора позволяет получить большую эффективность в сравнении с прибором-прототипом за счет сокращения потерь энергии, устранения отражений, уменьшения количество элементов, существенно снизить весогабаритные характеристики и стоимость, повысить надежность работы устройства.

Устройство работает следующим образом. Предварительно включается магнитная система 4, работающая в непрерывном или импульсном режимах. В момент достижения максимального магнитного поля источник питания формирует импульс отрицательной полярности (амплитуда напряжения 100-1000 кВ и ток 1-40 кА в зависимости от типа источника). Высоковольтный импульс подается на катод 3. В промежутке катод 3 - многорезонаторный анодный блок 1 создается высокая напряженность электрического поля, вызывающая развитие взрывной электронной эмиссии [Литвинов Е.А. и др. Автоэмиссионные и взрывоэмиссионные процессы при вакуумных разрядах. Успехи физических наук. Москва, 1983, т. 139, с. 265-302]. В скрещенных радиальном электрическом и аксиальном магнитном полях происходит образование электронных «спиц» пространственного заряда и процесс передачи энергии электронов в энергию СВЧ-излучения осуществляется так же, как в классическом магнетроне. Вывод СВЧ-излучения из резонаторов 2 анодного блока 1 осуществляется через щели в стенках резонаторов в волноводный внешний канал связи 5.

Внешний канал связи 5 запитывается с двух сторон бегущими от резонаторов СВЧ-волнами. В результате в течение импульса излучения образуется стоячая волна. Для анодного блока с числом резонаторов N/2=р, где р - четное число, длина канала связи, как и в приборе-прототипе, должна составлять (n+m)λ+λ|2, где n, m - целые числа. В этом случае поступающая от противоположного резонатора волна окажется в фазе с волной в резонаторе (для анодного блока с таким числом резонаторов колебания в противоположно расположенных резонаторах противофазны). Для того чтобы антенна 6 не излучала в процессе накопления энергии резонатором (внешним каналом связи), ее следует расположить в нуле стоячей волны, а именно на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов.

Для анодного блока с числом резонаторов N/2=р, где р - нечетное число (колебания противоположных резонаторов синфазны), длина внешнего канала связи 5 должна быть (n+m)λ, где n, m - целые числа. Для расположения антенны 6 в нуле стоячей волны она должна находиться во внешнем канале связи 5 на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов.

Как в первом, так и во втором случаях на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 располагается разрядник 7. При включении разрядника происходит вывод энергии из резонатора (канала связи) за счет резкого изменения связи резонатора с излучающей антенной. Включение разрядника может происходить в режиме самопробоя под действием нарастающего электрического поля запасаемых в резонаторе СВЧ-колебаний, а также при подаче высоковольтного импульса от внешнего генератора импульсов высокого напряжения.

Примером конкретного выполнения может служить релятивистский магнетрон 10-см диапазона длин волн с восемью резонаторами лопаточного типа с выходной мощностью до 300 МВт, разработанный и применяемый в Физико-техническом институте Томского политехнического университета. Схема прибора соответствует приведенной на фиг.1.

Внутренний диаметр анодного блока, выполненного из нержавеющей стали, составляет 43 мм, глубина резонаторов 21,5 мм, длина 72 мм. Графитовый катод имеет диаметр 20 мм. Канал связи соединяет противоположно расположенные резонаторы. Волновод 5 изготовлен из отрезка медного прямоугольного волновода, внутренним сечением 72х34 мм. Длина волны излучения магнетрона на π-виде колебаний 9,85 см. Тогда длина волны в волноводе 13,55 см. При работе релятивистского магнетрона на π-виде колебаний на длине канала должно укладываться (n+m+0,5)λ длин волн для того, чтобы волна, пришедшая от противоположного резонатора, была в фазе с колебаниями резонатора. Таким образом, длина канала связи составляет 169,4 см (12,5 λ). Чтобы антенна не излучала при возбуждении π-вида колебаний в процессе накопления энергии, она размещается симметрично от резонаторов, т.е. по оси канала связи. На расстоянии 3λ/4=10,2 см от оси антенны расположен управляемый разрядник, срабатывающий при подаче высоковольтного импульса (15 кВ) от внешнего источника (на фиг.2 не показан). Добротность резонатора по результатам «холодных» измерений составила ~200.

Ожидаемый коэффициент усиления выходной мощности заявляемого релятивистского магнетрона ~5, выходная мощность ~1,5 ГВт, длительность выходного импульса, равная времени двойного пробега электромагнитной волны по резонатору СВЧ-компрессора длиной 89,8 см, ~9-10 нс.

Релятивистский магнетрон, содержащий многорезонаторный анодный блок, коаксиальный с ним взрывоэмиссионный катод, внешнюю магнитную систему, излучающую антенну, расположенную во внешнем канале связи на расстоянии nλ+λ/4 от одного из резонаторов, и разрядник, расположенный на расстоянии kλ/4 от оси антенны, где n - целое число; λ - длина волны в волноводе; k - нечетное число.
РЕЛЯТИВИСТСКИЙ МАГНЕТРОН
РЕЛЯТИВИСТСКИЙ МАГНЕТРОН
Источник поступления информации: Роспатент

Показаны записи 71-80 из 143.
10.02.2015
№216.013.2675

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический...
Тип: Изобретение
Номер охранного документа: 0002541298
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c7

Сверхпроводящий выключатель

Сверхпроводящий выключатель может быть использован для коммутации электрических цепей постоянного тока, в системах вывода энергии из индуктивных сверхпроводящих накопителей, для защиты крупных магнитных сверхпроводящих систем, работающих в режиме «замороженного» магнитного поля, сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002541380
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26cf

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре. Отличительная особенность способа прогнозирования износостойкости...
Тип: Изобретение
Номер охранного документа: 0002541388
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.284a

Способ создания модели перекисного окисления лимфоцитов

Изобретение относится к медицине и может быть использовано для оценки эффективности модели перекисного окисления липидов мембран лимфоцитов. Для этого предварительно обрабатывают лимфоциты перекисью водорода в конечной концентрации 0,5 мМ и определяют белково-связанный глутатион. При увеличении...
Тип: Изобретение
Номер охранного документа: 0002541771
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b9c

Парогазовая установка

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой...
Тип: Изобретение
Номер охранного документа: 0002542621
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fba

Микромеханический акселерометр

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью...
Тип: Изобретение
Номер охранного документа: 0002543686
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3223

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что выполняют излучение ультразвукового сигнала, прием ответного сигнала, измерение временного интервала между излученным и принятым сигналами и определение расстояния до...
Тип: Изобретение
Номер охранного документа: 0002544310
Дата охранного документа: 20.03.2015
Показаны записи 71-80 из 235.
10.12.2013
№216.012.89fc

Способ идентификации водородного охрупчивания легких сплавов на основе титана

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла...
Тип: Изобретение
Номер охранного документа: 0002501006
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a77

Резонансный свч-компрессор

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода...
Тип: Изобретение
Номер охранного документа: 0002501129
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e2c

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из...
Тип: Изобретение
Номер охранного документа: 0002502079
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fff

Способ приготовления модельного коллоидного раствора

Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002502556
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9556

Интегральный микромеханический гироскоп

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. Гироскоп содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины...
Тип: Изобретение
Номер охранного документа: 0002503924
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97ed

Способ получения вольфрамата натрия

Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л. Процесс выщелачивания ведут не менее 6 часов при температуре 200-225°С с постоянным перемешиванием. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002504592
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9896

Способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим...
Тип: Изобретение
Номер охранного документа: 0002504761
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98b5

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов...
Тип: Изобретение
Номер охранного документа: 0002504792
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9e5b

Способ получения циркониевой керамики

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов. Способ получения циркониевой керамики заключается в том, что порошковый материал на основе диоксида...
Тип: Изобретение
Номер охранного документа: 0002506247
Дата охранного документа: 10.02.2014
+ добавить свой РИД