×
10.05.2015
216.013.4b47

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ

Вид РИД

Изобретение

№ охранного документа
0002550778
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны. Зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги. 2 ил.
Основные результаты: Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

Изобретение относится к измерительной технике и может быть применено для бесконтактного определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Известны различные способы определения состояния дорожных покрытий, основанные на различных принципах и связанные с измерением электрической емкости (US 5398547, 21.03.1995), электрической проводимости и сопротивления (US 4745803, 24.05.1988; US 4287472, 01.09.1981), с применением ультразвуковых волн (US 5095754, 17.03.1992), световых волн, в частности, инфракрасного излучения и др. (Winter В. Sensoren warnen vor Wasser oder Eis auf der Strasse // Sensor magazine. 1998. N.2. P.8). Однако они имеют определенные недостатки: некоторые из них являются контактными способами и характеризуются износом компонент применяемых измерительных устройств, связаны с применением линий связи между датчиками и электронными блоками; другие способы, являясь бесконтактными, чувствительны к погодным условиям и не могут определять толщину водного слоя.

Известны также микроволновые способы определения состояния дорожного покрытия (US 4690553, 01.09.1987; US 5686841, 11.11.1997; Hertl S., Schaffar G., Stori H. Contactless determination of the properties of water films on road // Journal of Physics E.: Scientific Instruments. 1988. Vol.21. N.10. P.955-958). Эти способы и реализующие их устройства позволяют производить бесконтактные измерения, определять и идентифицировать наличие воды, снега или льда на поверхности дорожного полотна и измерять их толщину. Однако известные способы имеют существенный недостаток: они не обеспечивают высокую точность измерения толщины слоя вещества (воды, снега или льда), который может быть очень тонким. Кроме того, эти способы достаточно сложны и имеют высокую стоимость реализации.

Известен также способ (US 5497100, 05.03.1996), который заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, получении множества значений амплитуд разностных сигналов, соответствующих принимаемым и излучаемых волнам, сравнении данного множества с множеством известных моделей поверхности и определении состояния дороги по результатам этого сравнения. Данный способ характеризуется невысокой точностью и сложен в реализации: процесс получения полезной информации связан со сложной функциональной обработкой принимаемых сигналов.

Известно также техническое решение (RU 2473888 C1, 27.01.2013), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, встраивании в поверхностный слой контролируемого участка дороги резонатора с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, измерении мощности отраженных от резонатора и принимаемых электромагнитных волн и по суждении о состоянии поверхности дороги по величине частоты, соответствующей минимуму принимаемой мощности. При этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги.

Данный способ, как и вышеупомянутые способы, сложен в реализации: процесс получения полезной информации связан с применением генератора частотно-модулированных колебаний, со сложной функциональной обработкой принимаемых сигналов. Также необходимо применение пассивного резонатора - отражателя электромагнитных волн, встраиваемого в полотно дороги на его измерительном участке, что также усложняет реализацию данного способа.

Поэтому существует необходимость нахождения технического решения, свободного от указанных недостатков и обеспечивающего возможность проведения измерений более простыми средствами.

Техническим результатом настоящего изобретения является упрощение процесса определения состояния покрытия дороги.

Технический результат в предлагаемом способе определения состояния поверхности дороги достигается тем, что контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, при этом зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

Предлагаемый способ поясняется чертежами.

На фиг.1 приведена схема размещения устройства для реализации способа.

На фиг.2 изображена структурная схема устройства для реализации способа.

На чертежах показаны СВЧ-устройство 1, штанга 2, дорожное покрытие 3, слой воды, льда или снега 4, генератор 5, детектор 6, антенна 7.

Сущность предлагаемого способа состоит в следующем.

Согласно данному способу контролируемый участок поверхности дороги зондируют по нормали к ней электромагнитными волнами фиксированной частоты, принимают отраженные от этого участка поверхности электромагнитные волны, производят смешение зондирующих и принимаемых электромагнитных волн. Производят измерение фазового сдвига зондирующих и отраженных волн с применением гомодинной интерференционной измерительной системы на выходе ее смесителя. При этом предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

В отсутствие какого-либо покрывающего слоя на поверхности дороги этот основной фазовый сдвиг определяется изменением фазы в воздушном пространстве между измерительным устройством и поверхностью дороги. При наличии же какого-либо слоя на поверхности дороги, а именно присутствием на ней слоя воды, льда или снега, появляется дополнительный фазовый сдвиг по отношению к указанному основному фазовому сдвигу. Напряжение на выходе смесителя данного измерительного устройства зависит от величины суммарного фазового сдвига. Этот фазовый сдвиг изменяется в зависимости от толщины покрывающего поверхность дороги слоя. Он также зависит и от электрофизических параметров, в частности диэлектрической проницаемости покрывающего слоя (воды, льда или снега).

В отсутствие какого-либо слоя на поверхности дороги амплитуда I0 принимаемого сигнала, соответствующего интерференции зондирующих и отраженных волн, есть:

где m - волновое число, φ - основной фазовый сдвиг волн в воздушном пространстве, K - постоянный коэффициент.

Если на поверхности дороги имеется слой воды, льда или снега, то амплитуда I принимаемого сигнала есть:

Здесь Δφ - дополнительный фазовый сдвиг, вызванный присутствием покрывающего слоя (воды, льда или снега) на поверхности дороги.

Как следует из (1) и (2), разность между I0 и I выражается так:

Если Δφ<φ≈π/2, то

Дополнительный фазовый сдвиг Δφ выражается через параметры поверхностного слоя дороги:

где β=2πf√ε/c - волновое число для слоя, f - частота, c - скорость света в свободном пространстве, ε - диэлектрическая проницаемость контролируемого поверхностного слоя.

Величина дополнительного фазового сдвига Δφ изменяется с изменением параметров (толщины, фазового состояния вещества, примесей в нем, температуры) покрывающего дорогу слоя. Поэтому данные параметры возможно определить по характеристикам интерференционной картины зондирующих и отраженных волн.

Используя соотношение (5), можно найти величину фазового сдвига Δφ для различных состояний поверхности дороги, характеризуемых присутствием слоя воды или льда. В частности, можно зафиксировать переход слоя воды в ледяной слой, что является важным информативным параметром.

Для слоя льда (ε=3,1) и при f=10,525 ГГц из формулы (5) следует

где d выражается в метрах (м). If d=1 мкм, то Δφ=0,02°; если d=1 мм, то Δφ=20°.

Для водного слоя (ε≈80) и f=10,525 GHz получим

где d выражается в метрах (м). Если d=1 мкм, то Δφ=0.11°; если d=1 мм, то Δφ=110°.

Эти оценки показывают, что слои вода и льда на поверхности дороги могут быть обнаружены и идентифицированы, производя измерения фазового сдвига Δφ.

На фиг.1 приведено СВЧ-устройство 1 для реализации данного способа. Устройство может быть закреплено на конце штанги 2 и размещено над измерительным участком поверхности дороги 3, обеспечивая зондирование этого участка по нормали к нему. Для размещения устройства могут быть также использованы, при наличии и такой возможности, существующие мосты над дорогами.

СВЧ-устройство 1 может быть применено для определения состояния поверхности дороги 3 (например, асфальта) с возможным слоем 4 воды, льда или снега посредством определения фазового сдвига зондирующих и отраженных электромагнитных волн. Устройство 1 содержит генератор 5 на диоде Ганна и смесительный диод в качестве детектора 6 (фиг.2). С помощью антенны 7 (в простейшем случае - это открытый конец волновода) излучаются электромагнитные волны, которые направляются в сторону поверхности дороги 3 по нормали к ней. Отраженные волны поступают на детектор 6. Их частота остается равной частоте излучаемых волн; интерференция зондирующих и отраженных волн образует соответствующую картину стоячих (точнее, смешанных) волн в пространстве распространения этих волн, что регистрируется детектором 6.

Согласно данному способу предварительно определяют основной фазовый сдвиг φ зондирующих и отраженных волн в воздушном пространстве в отсутствие покрывающего слоя на поверхности дороги, затем определяют дополнительный фазовый сдвиг Δφ этих волн при наличии этого слоя и по величине дополнительного фазового сдвига Δφ по отношению к основному фазовому сдвигу φ судят о состоянии поверхности дороги.

Разностный сигнал на выходе детектора 6 соответствует указанной интерференции зондирующих и отраженных волн. Амплитуда этого выходного сигнала фиксируется с применением смесительного диода; его выходной сигнал есть напряжение постоянного тока, зависящее от измеряемой толщины воды или льда на поверхности дороги (или соответствующее их отсутствию). Параметры генератора могут быть, в частности, следующими: частота 10,525 ГГц, выходная мощность 8 мВ, напряжение источника питания +8 В.

Для определения состояния поверхности дороги, обусловленного наличием на ее поверхности слоя осадков или его отсутствием, необходимо знать электрофизические параметры возможных веществ на его поверхности - воды, снега и льда в СВЧ-диапазоне частот электромагнитных волн. Поскольку электрофизические параметры воды, снега и льда существенно отличаются от единицы (что соответствует отсутствию такого слоя на дороге) и друг от друга (Nyfors E.G., Vainikainen P. Industrial microwave sensors. Artech House, Inc. 1989. 351 p.), то значения фазового сдвига Δφ и диапазон его изменения существенно отличаются при наличии того или иного слоя на поверхности дороги или при его отсутствии. Это позволяет как определить, какой вид слоя осадков (вода, снег или лед) присутствует на дороге (или отсутствует), а также, по величине изменения Δφ, найти его толщину.

Таким образом, данный способ позволяет достаточно просто и с высокой точностью определять состояние поверхности дороги. Он дает возможность фиксировать наличие или отсутствие на поверхности дороги слоя воды, снега или льда и производить их идентификацию.

Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 142.
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
20.02.2019
№219.016.c2f6

Магниторезистивная головка-градиометр

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом. Техническим результатом является создание магниторезистивной головки-градиометра на основе металлической ферромагнитной наноструктуры с планарным протеканием...
Тип: Изобретение
Номер охранного документа: 0002403652
Дата охранного документа: 10.11.2010
23.02.2019
№219.016.c647

Способ управления движением судна

Изобретение относится к области судовождения. Автоматическое управление движением судна обычно осуществляется с помощью кормового руля достаточно эффективно, но при наличии нескольких гребных винтов, а также при волнении моря или ветре качество управления падает. Предложенный способ позволяет...
Тип: Изобретение
Номер охранного документа: 0002388650
Дата охранного документа: 10.05.2010
23.02.2019
№219.016.c64b

Способ измерения объемного содержания нефти и воды в потоке нефтеводяной эмульсии в трубопроводе

В резонаторе (4), встроенном в измерительный участок (1) трубопровода (2), возбуждают электромагнитные колебания и формируют два сигнала, частота одного из которых пропорциональна собственной (резонансной) частоте колебаний резонатора, а частота другого - его добротности. По резонансной частоте...
Тип: Изобретение
Номер охранного документа: 0002410672
Дата охранного документа: 27.01.2011
23.02.2019
№219.016.c660

Устройство для измерения массы сжиженного газа в замкнутом резервуаре

Изобретение относится к электромагнитным методам контроля и измерения и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии. Сущность: устройство содержит резонатор, выполненный в виде непрерывной щелевой линии на стенке...
Тип: Изобретение
Номер охранного документа: 0002427805
Дата охранного документа: 27.08.2011
Показаны записи 61-70 из 99.
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
+ добавить свой РИД