×
10.05.2015
216.013.4a8b

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СЛЕДОВЫХ КОМПОНЕНТОВ МЕТОДОМ ЛАЗЕРНО-ИСКРОВОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ

Вид РИД

Изобретение

№ охранного документа
0002550590
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности пробы, причем величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы. Изобретение обеспечивает увеличение чувствительности и экспрессности анализа при взаимодействии двух импульсов лазерного излучения на пробу.
Основные результаты: Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.

Область техники

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества, в геологоразведочных службах для выявления геохимических аномалий в почвах и санитарных службах для контроля загрязнения окружающей среды неорганическими токсикантами.

Уровень техники

Метод лазерно-искровой эмиссионной спектрометрии (ЛИЭС) основан на испарении, атомизации и возбуждении пробы мощным лазерным излучением, что приводит к появлению характеристических эмиссионных спектров светящейся лазерно-индуцированной плазмы. Основная проблема данного метода состоит в том, что свечение атомных и ионных линий в лазерной плазме наблюдается в коротком временном промежутке и налагается на непрерывное фоновое излучение лазерной плазмы и необходимо увеличивать интенсивность свечения лазерной плазмы и повысить чувствительность метода по обнаружению элементов.

Известны способы определения содержания следовых компонентов - это атомно-эмиссионный метод с индуктивно-связанной плазмой (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.3:3.11-98 от 26.10.2005) и пламенный атомно-абсорбционный метод (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.2:2.3:3.36-2002 от 25.10.2011). Недостатком данных способов является длительная и сложная подготовка исследуемых проб, включающая переведение анализируемого пробы в раствор, использование спектрально чистых газов и реагентов на этапе проведения анализов, длительность проведения анализов.

Известен способ элементного состава пробы и определения следовых компонентов анализируемой пробы методом ЛИЭС (патент RU №2436070, G01N 21/00, опубл. 10.12.2011 г.), осуществляемый фемтосекундным лазерным импульсом, разделенным на 2 пучка одинаковой мощности. Недостатком известного способа является высокая стоимость фемтосекундного комплекса, а также повышенные требования к помещению: отсутствие пыли для предотвращения повреждения оптических элементов при прохождении фемтосекундных импульсов, отсутствие вибраций, что делает невозможным его применение в полевых условиях.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу (патент RU №2300094, G01N 21/36, опубл. 25.05.2007 г.). При этом воздействие осуществляется импульсным наносекундным лазером, у которого генерация импульсов осуществляется пассивным затвором на центрах окраски. В результате образуется 2-8 следующих друг за другом гигантских импульсов с интервалом 10-30 мкс на фоне импульса свободной генерации, который с помощью системы фокусировки направляется на исследуемую пробу, образуя лазерный факел, излучение которого регистрируют и затем по полученным эмиссионным спектрам определяют элементный состав вещества.

Недостатком прототипа является невозможность контролировать время следования и количество испаряющих лазерных импульсов. Это исключает возможность выбора межимпульсной задержки для устранения влияния интенсивного фонового излучения, а также регистрировать аналитические эмиссионные линии во время их наибольшей интенсивности.

Раскрытие изобретения

Цель изобретения - разработка пригодного для полевых работ способа лазерно-искрового эмиссионного анализа твердых веществ с повышенной чувствительностью за счет использования двухимпульсного воздействия на пробу и использования метода регулирования межимпульсной задержки на основании данных о развитии плазмы в одноимпульсном режиме.

Поставленная цель достигается тем, что в способе определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии исследуемая проба подвергается действию последовательных лазерных импульсов, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрации эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Одним из отличительных признаков заявляемого изобретения является двухимпульсный способ воздействия на пробу с регулируемой межимпульсной задержкой за счет использования синхронизуемых электрооптических затворов. Между импульсами создается временная задержка с помощью двухканального генератора импульсов, который запускается от вспышки накачивающей лампы первого лазера, открывает затвор первого лазера для генерации импульса и с заданной межимпульсной задержкой открывает затвор второго лазера.

При воздействии первого импульса происходит оптический пробой и образуется лазерная плазма, воздействие второго импульса вызывает неравномерное увеличение интенсивности спектра лазерной плазмы, механизм которого остается неясным и его невозможно заранее предсказать [Кремерс Д., Радзиемски Л. Лазерно-искровая эмиссионная спектроскопия. Техносфера, М.: 2009, С.77]. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы.

При данном способе проведения ЛИЭС анализа увеличивается интенсивность аналитических эмиссионных линий и уменьшается интенсивность непрерывного свечения лазерной плазмы. Это позволяет повысить чувствительность определения следовых компонентов в пробе. Также предложенный способ не требует продолжительных временных исследований развития лазерного факела для определения параметров межимпульсной задержки, что сокращает время проведения анализа. Заявляемый способ позволяет повысить чувствительность и экспрессность анализа при взаимодействии двух импульсов лазерного излучения на пробу, что является техническим результатом заявляемого решения.

Осуществление изобретения

Пример 1

Описанную форму выполнения предлагаемого способа использовали для количественного спектрального определения свинца, цинка и бериллия в почвах, что привело к увеличению интенсивности аналитических линий. Анализируемая проба помещалась на препаратный столик, излучение второй (532 нм) и третьей гармоник (355 нм) Nd:АИГ лазера с электрооптическим затвором направлялось соосно с помощью диэлектрического зеркала (пропускание 100% при 355 нм, 100% отражение при 532 нм) на фокусирующую линзу (F=150 мм) и фокусировалось на поверхности пробы. Излучение лазерно-индуцированной плазмы проецировалась с помощью двухлинзового конденсора на щель спектрографа и регистрировалось с помощью стробируемой электронно-оптической цифровой камеры. Межимпульсные задержки были выбраны равными времени наблюдения наибольшего соотношения сигнал/шум в одноимпульсном режиме воздействия на пробу. При выбранных межимпульсных задержках 3 мкс, 1 мкс и 0,75 мкс наблюдалось, соответственно, наибольшее увеличение интенсивности аналитических линий Pb I 405,78 нм в 10 раз, Zn I 213,83 нм в 10 раз и Be II 313,10 нм в 5 раз. При выборе меньших или больших значений межимпульсной задержки увеличение интенсивности линий указанных элементов была меньше.

Изобретение может быть использовано для экспрессного количественного определения следовых компонентов почв в полевых условиях.

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.
Источник поступления информации: Роспатент

Показаны записи 61-70 из 156.
13.01.2017
№217.015.8072

Электрохимический способ получения наноразмерных структур оксида титана (iv)

Изобретение может быть использовано в производстве гетерогенных катализаторов, обладающих высокоразвитой поверхностью, и электродов в литий-ионных батареях. Электрохимический способ получения наноразмерных структур оксида титана (IV) включает анодное окисление титанового электрода в ионной...
Тип: Изобретение
Номер охранного документа: 0002602126
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.829a

Джозефсоновский магнитный поворотный вентиль

Использование: для создания джозефсоновского магнитного поворотного вентиля. Сущность изобретения заключается в том, что джозефсоновский магнитный поворотный вентиль включает два сверхпроводящих электрода с токоподводами и область слабой связи между ними в виде тонкопленочной слоистой...
Тип: Изобретение
Номер охранного документа: 0002601775
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.838a

Диамиды 4,7-дизамещенных 1,10-фенантролин-2,9-дикарбоновых кислот, способ их получения и экстракционная смесь на их основе

Изобретение относится к области органической химии, а именно к диамидам 4,7-дизамещенных 1,10-фенантролин-2,9-дикарбоновых кислот, где R представляет собой радикал, выбранный из группы низший алкил или арил, содержащий 6 атомов углерода, а X представляет собой н-пентокси, хлор или фенил. Также...
Тип: Изобретение
Номер охранного документа: 0002601554
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.858d

Магнитоэлектрореологический эластомер

Изобретение относится к области композиционных магнитных материалов, конкретно к магнитоэлектрореологическим эластомерам, обратимо изменяющим свои физические характеристики под действием магнитного и электрического поля, и может быть использовано в машиностроении, электротехнике,...
Тип: Изобретение
Номер охранного документа: 0002603196
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.a1be

Антикоагулянтный, антитромбоцитарный и фибриндеполимеризационный комплекс на основе гепарина, способ его получения и применение

Группа изобретений относится к медицине и фармакологии и касается создания средств на основе гепарина, обладающих антикоагулянтным, антитромбоцитарным, фибриндеполимеризационным действием на организм. Комплекс содержит высокомолекулярный гепарин с молекулярной массой 20000 Да и аспарагиновую...
Тип: Изобретение
Номер охранного документа: 0002606836
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b4dd

Способ получения энантиомерно чистых (s)-аминокислот на основе комплекса [(s)-bpb-gly]ni(ii), напрямую связанных с фуллереновым ядром через α-углеродный атом, в форме хиральных (a) и (c) 1,4-аддуктов [60]фуллерена

Изобретение относится к способу стереоселективного синтеза (S)-α-фуллеренилглицина, в котором α-углеродный атом кислоты напрямую связан с фуллереновым ядром, в форме комплекса Ni(II) типа основания Шиффа со вспомогательным [(S)-BPB] лигандом в виде хиральных (A) и (C) 1,4-аддуктов формулы (I)....
Тип: Изобретение
Номер охранного документа: 0002614247
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5d1

Средство, обладающее нейропротекторными свойствами в эксперименте и способ его получения

Группа изобретений относится к области создания средства, обладающего нейропротекторными свойствами в эксперименте, включающего биодеградируемый полимерный матрикс на основе фиброина шелка с иммобилизированным пептидом-агонистом рецептора ПАР1, освобождаемым активированным протеином С в...
Тип: Изобретение
Номер охранного документа: 0002614694
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b65b

Способ отклонения тепловой кумулятивной струи расплавленного металла и образованного ей канала на металлической поверхности катода в дуговом импульсном разряде при взрыве проволочки между электродами действием поперечного магнитного поля

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая...
Тип: Изобретение
Номер охранного документа: 0002614526
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6b1

Способ создания образцов с заранее заданной термо-эдс, предназначенных для преобразования тепловой энергии в электрическую

Изобретение относится к электротехнике, а именно к области прямого преобразования тепловой энергии в электрическую энергию, и может быть использовано для получения образцов магнитных полупроводников - легированных манганитов с заданной термо-ЭДС для последующего их использования в источниках...
Тип: Изобретение
Номер охранного документа: 0002614739
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b6b5

Фармацевтическая композиция на основе β-модификации 2,3-бис-(гидроксиметил)хиноксалин-n,n'-диоксида и способ её получения

Группа изобретений относится к медицине. Описана фармацевтическая композиция, содержащая кристаллическую β-модификацию 2,3-бис-(гидроксиметил)хиноксалин-N,N'-диоксида, характеризующуюся определенным набором дифракционных максимумов и их интенсивностью (I, %), и наночастицы серебра. Описан...
Тип: Изобретение
Номер охранного документа: 0002614736
Дата охранного документа: 28.03.2017
+ добавить свой РИД