×
10.05.2015
216.013.4a8b

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СЛЕДОВЫХ КОМПОНЕНТОВ МЕТОДОМ ЛАЗЕРНО-ИСКРОВОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ

Вид РИД

Изобретение

№ охранного документа
0002550590
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности пробы, причем величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы. Изобретение обеспечивает увеличение чувствительности и экспрессности анализа при взаимодействии двух импульсов лазерного излучения на пробу.
Основные результаты: Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.

Область техники

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества, в геологоразведочных службах для выявления геохимических аномалий в почвах и санитарных службах для контроля загрязнения окружающей среды неорганическими токсикантами.

Уровень техники

Метод лазерно-искровой эмиссионной спектрометрии (ЛИЭС) основан на испарении, атомизации и возбуждении пробы мощным лазерным излучением, что приводит к появлению характеристических эмиссионных спектров светящейся лазерно-индуцированной плазмы. Основная проблема данного метода состоит в том, что свечение атомных и ионных линий в лазерной плазме наблюдается в коротком временном промежутке и налагается на непрерывное фоновое излучение лазерной плазмы и необходимо увеличивать интенсивность свечения лазерной плазмы и повысить чувствительность метода по обнаружению элементов.

Известны способы определения содержания следовых компонентов - это атомно-эмиссионный метод с индуктивно-связанной плазмой (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.3:3.11-98 от 26.10.2005) и пламенный атомно-абсорбционный метод (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.2:2.3:3.36-2002 от 25.10.2011). Недостатком данных способов является длительная и сложная подготовка исследуемых проб, включающая переведение анализируемого пробы в раствор, использование спектрально чистых газов и реагентов на этапе проведения анализов, длительность проведения анализов.

Известен способ элементного состава пробы и определения следовых компонентов анализируемой пробы методом ЛИЭС (патент RU №2436070, G01N 21/00, опубл. 10.12.2011 г.), осуществляемый фемтосекундным лазерным импульсом, разделенным на 2 пучка одинаковой мощности. Недостатком известного способа является высокая стоимость фемтосекундного комплекса, а также повышенные требования к помещению: отсутствие пыли для предотвращения повреждения оптических элементов при прохождении фемтосекундных импульсов, отсутствие вибраций, что делает невозможным его применение в полевых условиях.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу (патент RU №2300094, G01N 21/36, опубл. 25.05.2007 г.). При этом воздействие осуществляется импульсным наносекундным лазером, у которого генерация импульсов осуществляется пассивным затвором на центрах окраски. В результате образуется 2-8 следующих друг за другом гигантских импульсов с интервалом 10-30 мкс на фоне импульса свободной генерации, который с помощью системы фокусировки направляется на исследуемую пробу, образуя лазерный факел, излучение которого регистрируют и затем по полученным эмиссионным спектрам определяют элементный состав вещества.

Недостатком прототипа является невозможность контролировать время следования и количество испаряющих лазерных импульсов. Это исключает возможность выбора межимпульсной задержки для устранения влияния интенсивного фонового излучения, а также регистрировать аналитические эмиссионные линии во время их наибольшей интенсивности.

Раскрытие изобретения

Цель изобретения - разработка пригодного для полевых работ способа лазерно-искрового эмиссионного анализа твердых веществ с повышенной чувствительностью за счет использования двухимпульсного воздействия на пробу и использования метода регулирования межимпульсной задержки на основании данных о развитии плазмы в одноимпульсном режиме.

Поставленная цель достигается тем, что в способе определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии исследуемая проба подвергается действию последовательных лазерных импульсов, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрации эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Одним из отличительных признаков заявляемого изобретения является двухимпульсный способ воздействия на пробу с регулируемой межимпульсной задержкой за счет использования синхронизуемых электрооптических затворов. Между импульсами создается временная задержка с помощью двухканального генератора импульсов, который запускается от вспышки накачивающей лампы первого лазера, открывает затвор первого лазера для генерации импульса и с заданной межимпульсной задержкой открывает затвор второго лазера.

При воздействии первого импульса происходит оптический пробой и образуется лазерная плазма, воздействие второго импульса вызывает неравномерное увеличение интенсивности спектра лазерной плазмы, механизм которого остается неясным и его невозможно заранее предсказать [Кремерс Д., Радзиемски Л. Лазерно-искровая эмиссионная спектроскопия. Техносфера, М.: 2009, С.77]. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы.

При данном способе проведения ЛИЭС анализа увеличивается интенсивность аналитических эмиссионных линий и уменьшается интенсивность непрерывного свечения лазерной плазмы. Это позволяет повысить чувствительность определения следовых компонентов в пробе. Также предложенный способ не требует продолжительных временных исследований развития лазерного факела для определения параметров межимпульсной задержки, что сокращает время проведения анализа. Заявляемый способ позволяет повысить чувствительность и экспрессность анализа при взаимодействии двух импульсов лазерного излучения на пробу, что является техническим результатом заявляемого решения.

Осуществление изобретения

Пример 1

Описанную форму выполнения предлагаемого способа использовали для количественного спектрального определения свинца, цинка и бериллия в почвах, что привело к увеличению интенсивности аналитических линий. Анализируемая проба помещалась на препаратный столик, излучение второй (532 нм) и третьей гармоник (355 нм) Nd:АИГ лазера с электрооптическим затвором направлялось соосно с помощью диэлектрического зеркала (пропускание 100% при 355 нм, 100% отражение при 532 нм) на фокусирующую линзу (F=150 мм) и фокусировалось на поверхности пробы. Излучение лазерно-индуцированной плазмы проецировалась с помощью двухлинзового конденсора на щель спектрографа и регистрировалось с помощью стробируемой электронно-оптической цифровой камеры. Межимпульсные задержки были выбраны равными времени наблюдения наибольшего соотношения сигнал/шум в одноимпульсном режиме воздействия на пробу. При выбранных межимпульсных задержках 3 мкс, 1 мкс и 0,75 мкс наблюдалось, соответственно, наибольшее увеличение интенсивности аналитических линий Pb I 405,78 нм в 10 раз, Zn I 213,83 нм в 10 раз и Be II 313,10 нм в 5 раз. При выборе меньших или больших значений межимпульсной задержки увеличение интенсивности линий указанных элементов была меньше.

Изобретение может быть использовано для экспрессного количественного определения следовых компонентов почв в полевых условиях.

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 156.
10.03.2016
№216.014.cae5

Магнитный гаситель самостоятельного дугового разряда

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую металлическую проволочку,...
Тип: Изобретение
Номер охранного документа: 0002577040
Дата охранного документа: 10.03.2016
20.02.2016
№216.014.cd9f

Способ получения легированных поли[(r)карбинов] (r=h, алкил, арил)

Изобретение относится к области производства сверхтвердых материалов, а именно к способу получения легированных поли[(R)карбинов], где R=Н, алкил, арил. Способ заключается в том, что смесь содержащего тригалоидметильную группу органического соединения CXR, где X=Cl, Br; R=Н, арил, алкил, и...
Тип: Изобретение
Номер охранного документа: 0002575711
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cdb1

Способ электрохимического стереоселективного α-гидроксиалкилирования глицина

Изобретение относится к области органической химии и электрохимии, конкретно к способу стереоселективного α-гидроксиалкилирования глицина путем введения его в виде основания Шиффа в координационную сферу комплекса Ni(II) с хиральным лигандом ((S)-2N-(N′-бензилпролил)аминобензофеноном), после...
Тип: Изобретение
Номер охранного документа: 0002575710
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cded

Полимерные наночастицы состава фермент-поликатион-полианион, содержащие антиоксидантный фермент, для применения в медицине и способ их получения

Группа изобретений относится к химической энзимологии, к способу создания дисперсии, содержащей полимерные наночастицы с инкапсулированным антиоксидантным ферментом, в частности к получению водной дисперсии наночастиц состава супероксиддисмутаза/поликатион/полианион, которая предназначена для...
Тип: Изобретение
Номер охранного документа: 0002575836
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ce74

Способ получения искусственных алмазов

Изобретение относится к получению искусственного алмаза, который может быть использован в тяжелой промышленности. Перед загрузкой в пресс фуллерен С60 выдерживают в течение 30 минут в потоке водорода, затем помещают в контейнер из пирофиллита один или вместе с поли[гидридо(Н)карбином] в...
Тип: Изобретение
Номер охранного документа: 0002575713
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e881

Ферментный биокатализатор для нейтрализации фосфорорганических соединений in vivo

Изобретение относится к биотехнологии, в частности к ферментному биокатализатору в виде наноразмерных частиц, представляющих собой нековалентные полиэлектролитные комплексы, образованные полигистидинсодержащим полипептидом с активностью органофосфатгидролазы и блок-сополимером полиэтиленгликоля...
Тип: Изобретение
Номер охранного документа: 0002575627
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3152

Способ получения наноразмерных порошков лекарственных веществ и устройство для его осуществления

Группа изобретений относится к способу получения наноразмерных порошков лекарственных веществ, включающему перевод исходного вещества в газовую фазу, организацию направленного потока молекул соединения и последующую конденсацию вещества в виде наноразмерных частиц на охлаждаемой поверхности, и...
Тип: Изобретение
Номер охранного документа: 0002580279
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.40ec

Многоканальный оптоволоконный нейроинтерфейс для мультимодальной микроскопии мозга животных

Многоканальный оптоволоконный нейроинтерфейс для мультимодальной микроскопии относится к устройствам, обеспечивающим получение в эндоскопическом режиме оптических изображений биологических тканей, в частности, головного мозга свободноподвижных лабораторных животных. В устройстве торец...
Тип: Изобретение
Номер охранного документа: 0002584922
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.427d

Способ анализа цитохрома с в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Настоящее изобретение относится к области биоаналитических исследований и представляет собой способ анализа цитохрома С в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеяния (ГКР), включающий подготовку митохондрий и их нанесение на подложку на основе...
Тип: Изобретение
Номер охранного документа: 0002585118
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4341

Датчик размораживания продуктов на основе оранжевого каротиноидного белка

Датчик размораживания продуктов, подлежащих хранению при температурах, исключающих размораживание и последующее перезамораживание, имеет герметичную оболочку с расположенным в ней элементом индикации размораживания продуктов. Элементы индикации изготовлены из раствора фотоактивного оранжевого...
Тип: Изобретение
Номер охранного документа: 0002585464
Дата охранного документа: 27.05.2016
+ добавить свой РИД