×
10.05.2015
216.013.4a0a

Результат интеллектуальной деятельности: СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Авторы

№ охранного документа
0002550461
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких температурах, выполненное в виде одиночного металлического слоя из сплава, содержащего, вес.%: 24-26 кобальта, 12-14 хрома, 10-12 алюминия, 0,2-0,5 по меньшей мере одного элемента из группы, включающей в себя скандий и редкоземельные элементы, никель - остальное. Покрытие не содержит тантала, рения, кремния. Покрытие характеризуется высокими показателями стойкости к высокотемпературной коррозии и окислению. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к сплаву защитного слоя (покрытия) для защиты конструктивного элемента газовой турбины от коррозии и/или окисления, в частности, при высоких температурах, и конструктивному элементу газовой турбины по независимым пунктам формулы изобретения.

Защитные слои для металлических конструктивных элементов, которые должны повышать их коррозионную стойкость и/или стойкость к окислению, известны в уровне техники в большом количестве. Большинство из этих защитных слоев известны под общим названием MCrAlY, где Μ обозначает по меньшей мере один из элементов из группы, включающей в себя железо, кобальт и никель, а другими существенными составными частями являются хром, алюминий и иттрий.

Характерные покрытия этого рода известны из патентов US 4005989 и 4034142.

Известно также добавление рения (Re) в сплавы NiCoCrAlY.

Усилия по повышению температур на входе как стационарных газовых турбин, так и авиационных двигателей имеют большое значение в отрасли газовых турбин, так как температуры на входе являются важными определяющими величинами для достигаемых газовыми турбинами термодинамических коэффициентов полезного действия. Благодаря применению специально разработанных сплавов в качестве основных материалов для конструктивных элементов, которые должны подвергаться высоким тепловым нагрузкам, таких как направляющие и рабочие лопатки, в частности, благодаря применению монокристаллических суперсплавов, возможны температуры на входе значительно выше 1000°C. Между тем, уровень техники допускает температуры на входе, равные 950°C и больше у стационарных газовых турбин, а также 1100°C и больше в газовых турбинах авиационных двигателей.

Примеры конструкции лопатки турбины с монокристаллической подложкой, которая, в свою очередь, может иметь сложную конструкцию, содержатся в WO 91/01433 A1.

В то время как физическая нагрузочная способность разработанных тем временем основных материалов для высоконагруженных конструктивных элементов с учетом возможного дальнейшего повышения температур на входе практически не представляет собой проблемы, для достижения достаточной стойкости к окислению и коррозии необходимо прибегать к защитным слоям. Наряду с достаточной химической стойкостью защитного слоя при агрессивных воздействиях, которые могут ожидаться от выхлопных газов при температурах порядка 1000°C, защитный слой должен также иметь достаточно хорошие механические свойства, не в последнюю очередь - с учетом механического взаимодействия между защитным слоем и основным материалом. В частности, защитный слой должен быть достаточно вязким, чтобы он мог следовать за возможными деформациями основного материала и не рваться, так как таким образом создавались бы точки агрессивного воздействия окисления и коррозии.

Соответственно этому, в основе изобретения лежит задача предложить сплав и защитный слой, который обладает хорошей стойкостью к высокотемпературной коррозии и окислению, обладает хорошей долговременной стабильностью и который, кроме того, особенно хорошо адаптирован к механической нагрузке, которая, в частности, может ожидаться в газовой турбине при высокой температуре.

Задача решается с помощью сплава защитного покрытия (слоя) по первому независимому пункту формулы изобретения.

Другая задача изобретения заключается в том, чтобы предложить конструктивный элемент газовой или паровой турбины, который обладает повышенной защитой от коррозии и окисления.

Эта задача тоже решается с помощью конструктивного элемента газовой или паровой турбины по второму независимому пункту формулы изобретения, который для защиты от коррозии и окисления при высоких температурах имеет защитное покрытие по первому независимому пункту формулы изобретения в виде одинарного слоя, на который нанесен керамический теплобарьерный слой.

В зависимых пунктах формулы изобретения перечислены другие предпочтительные признаки, которые предпочтительно могут произвольно сочетаться друг с другом.

В основе изобретения лежит, в частности, тот известный факт, что защитный слой в покрытии и в переходной области между защитным слоем и основным материалом содержит хрупкие выделения рения. Эти хрупкие фазы, усиленно образующиеся при применении со временем и температурой, приводят при эксплуатации к сильно выраженным продольным трещинам в слое, а также в переходе слой/основной материал с последующим отслоением слоя. При взаимодействии с углеродом, который может диффундировать из основного материала внутрь слоя или диффундирует через поверхность внутрь слоя во время термообработки в печи, хрупкость выделений рения дополнительно повышается. При окислении фаз рения динамика образования трещин еще больше усиливается.

Изобретение поясняется подробнее ниже.

Показано:

фиг. 1: система слоев (покрытие), содержащая защитный слой,

фиг. 2: составы суперсплавов,

фиг. 3: газовая турбина,

фиг. 4: лопатка турбины и

фиг. 5: камера сгорания.

Фигуры и описание представляют собой только примеры осуществления изобретения.

В соответствии с изобретением защитный слой 7 (фиг. 1) для защиты конструктивного элемента от коррозии и окисления при высокой температуре, по существу, содержит следующие элементы (данные приведены в вес. %):

24%-26% кобальта (Co),

10%-12% алюминия (Αl),

0,2%-0,5% иттрия (Y) и/или по меньшей мере одного эквивалентного металла из группы, включающей в себя скандий и редкоземельные элементы,

12%-14% хрома (Cr),

остальное - никель (Ni) (NiCoCrAlY).

Этот перечень не окончателен, но не содержит тантала (Та), так как это влияет на плазменное преобразование γ/γ′. В одном из предпочтительных вариантов осуществления сплав состоит из следующих элементов: никель, кобальт, хром, алюминий и иттрий.

При высокой окислительной нагрузке (чистый газ для сжигания) иттрием должно связываться больше кислорода, чтобы защищающий слой оксида алюминия не мог расти слишком быстро, причем тогда значение иттрия предпочтительно составляет примерно до 0,7 вес. %. Однако вообще содержание иттрия в сплаве не может становиться слишком высоким, так как иначе это приводит к охрупчиванию.

Одним из предпочтительных вариантов осуществления является следующий состав сплава:

Ni-25Co-13Cr-11Al-0,3Y.

Следует констатировать, что доли отдельных элементов особенно согласованы с учетом их воздействий, которые, в частности, можно видеть в связи с отсутствующим элементом рением. Если размеры долей выбраны так, то можно обойтись без добавления рения (Re), так что и выделения рения не образуются. Предпочтительно, во время применения защитного слоя не возникает хрупких фаз, так что долговременные характеристики улучшены, и их срок действия увеличен.

При взаимодействии с восстановлением хрупких фаз, которые оказывают негативное воздействие особенно при более высоких механических свойствах, путем сокращения механических напряжений за счет выбранного содержания никеля улучшаются механические свойства.

Защитный слой при хорошей коррозионной стойкости обладает особенно хорошей стойкостью к окислению и отличается также особенно хорошими свойствами вязкости, так что он является особенно пригодным для применения в газовой турбине 100 (фиг. 3) при дополнительном повышении температуры на входе.

Порошки наносятся, например, путем плазменного напыления (APS (атмосферное плазменное напыление), LPPS (плазменное напыление при низком давлении), VPS (вакуумно-плазменное напыление,…)). Другие способы также возможны (PVD (физическое парофазное осаждение), CVD (химическое парофазное осаждение), холодное газодинамическое напыление,…).

Описанный защитный слой 7 действует также как адгезионный слой по отношению к суперсплаву.

Предпочтительно, для конструктивного элемента применяется только один единственный защитный слой 7, то есть не дуплексный слой для подслоя. На этот защитный слой 7 могут наноситься другие слои, в частности керамические теплобарьерные слои 10.

У конструктивного элемента 1 защитный слой 7 предпочтительно нанесен на подложку 4 из суперсплава на основе никеля или кобальта.

В качестве подложки, в частности, возможен следующий состав (данные в вес. %):

0,1%-0,15% углерод,

18%-22% хром,

18%-19% кобальт,

0%-2% вольфрам,

0%-4% молибден,

0%-1,5% тантал,

0%-1% ниобий,

1%-3% алюминий,

2%-4% титан,

0%-0,75% гафний,

альтернативно, небольшие доли бора и/или циркония, остаток никель.

Составы этого рода известны как литейные сплавы под названиями GTD222, IN939, IN6203 и Udimet 500.

Другие альтернативы для подложки 4 конструктивного элемента 1, 120, 130, 155 перечислены на фиг. 2.

Значение толщины защитного слоя 7 на конструктивном элементе 1 предпочтительно выбирается примерно от 100 мкм до 300 мкм.

Защитный слой 7 особенно пригоден для защиты конструктивного элемента 1, 120, 130, 155 от коррозии и окисления, когда конструктивный элемент подвергается воздействию выхлопных газов при температуре материала примерно 950°C, у авиационных турбин даже примерно 1100°C.

Защитный слой 7, предлагаемый изобретением, при этом особенно пригоден для защиты конструктивного элемента газовой турбины 100, в частности направляющей лопатки 120, рабочей лопатки 130 или элемента 155 теплозащитного экрана, который подвергается воздействию горячего газа перед турбиной или внутри нее, газовой турбины 100 или паровой турбины.

Защитный слой 7 может применяться в качестве верхнего слоя (защитный слой является наружным слоем) или в качестве подслоя (защитный слой является промежуточным слоем).

Предпочтительно он применяется в качестве «одиночного» слоя, т.е. нет никакого другого металлического слоя.

На фиг. 1 показана в качестве конструктивного элемента система 1 слоев. Эта система 1 слоев состоит из подложки 4. Подложка 4 может быть металлической и/или керамической. В частности, у конструктивных элементов турбин, таких как, например, рабочие 120 (фиг. 4) или направляющие 130 (фиг. 3, 4) лопатки турбины, элементы 155 теплозащитного экрана (фиг. 5), а также другие части корпуса паровой или газовой турбины 100 (фиг. 3), подложка 4 состоит из суперсплава на основе никеля, кобальта или железа.

Предпочтительно применяются суперсплавы на основе никеля.

На подложке 4 имеется предлагаемый изобретением защитный слой 7. Он предпочтительно применяется в качестве «одиночного» слоя, т.е. нет никакого другого металлического слоя.

Предпочтительно этот защитный слой 7 наносится путем плазменного напыления (VPS, LPPS, APS1, …).

Этот слой может применяться в качестве наружного слоя (не изображено) или промежуточного слоя (фиг. 1).

В последнем случае на защитном слое 7 имеется керамический теплобарьерный слой 10.

Защитный слой 7 может наноситься на вновь изготовленные конструктивные элементы и восстановленные конструктивные элементы из обновленных.

Восстановление (ремонт) означает, что конструктивные элементы 1 после их применения при необходимости отделяются от слоев покрытия (теплобарьерный слой) и продукты коррозии и окисления удаляются, например, путем обработки кислотой (отпаривания кислотой). При необходимости требуется еще ремонт трещин. После этого на такой конструктивный элемент может снова наноситься покрытие, так как подложка 4 очень дорогая.

На фиг. 3 показана в качестве примера газовая турбина 100 в продольном частичном сечении.

Газовая турбина 100 имеет внутри опертый с возможностью вращения вокруг оси 102 вращения ротор 103, снабженный валом 101, который также называется рабочим колесом турбины.

Вдоль ротора 103 последовательно расположены всасывающий корпус 104, компрессор 105, имеющая, например, форму тора камера 110 сгорания, в частности кольцевая камера сгорания, снабженная несколькими расположенными коаксиально горелками 107, турбина 108 и корпус 109 газовыпускной системы.

Кольцевая камера 110 сгорания сообщается, например, с кольцеобразным каналом 111 горячих газов. Там, например, четыре последовательно включенные ступени 112 турбины образуют турбину 108.

Каждая ступень 112 турбины образована, например, из двух лопаточных венцов. Если смотреть в направлении течения рабочей среды 113, в канале 111 горячих газов, за рядом 115 направляющих лопаток следует ряд 125, образованный из рабочих лопаток 120.

Направляющие лопатки 130 при этом закреплены на внутреннем корпусе 138 статора 143, в отличие от чего рабочие лопатки 120 ряда 125 установлены, например, посредством диска 133 турбины на роторе 103.

С ротором 103 соединен генератор или рабочая машина (не изображена).

Во время эксплуатации газовой турбины 100 воздух 135 всасывается компрессором 105 через всасывающий корпус 104 и сжимается. Получаемый на обращенном к турбине конце компрессора 105 сжатый воздух направляется к горелкам 107 и там смешивается с топливом. Эта смесь затем сжигается в камере 110 сгорания с образованием рабочей среды 113. Оттуда рабочая среда 113 течет по каналу 111 горячих газов к направляющим лопаткам 130 и рабочим лопаткам 120. На рабочих лопатках 120 рабочая среда 113 расширяется с передачей импульса, так что рабочие лопатки 120 приводят в движение ротор 103, а ротор - соединенную с ним рабочую машину.

Находящиеся под воздействием горячей рабочей среды 113 конструктивные элементы во время эксплуатации газовой турбины 100 подвергаются воздействию тепловых нагрузок. Направляющие лопатки 130 и рабочие лопатки 120 первой, если смотреть в направлении течения рабочей среды 113, ступени 112 турбины, наряду с футеровочными элементами теплозащитного экрана кольцевой камеры 110 сгорания, подвергаются тепловым нагрузкам в наибольшей степени.

Чтобы выдерживать действующие там температуры, они могут охлаждаться с помощью охлаждающего средства.

Подложки конструктивных элементов могут также иметь направленную структуру, т.е. они являются монокристаллическими (SX-структура) или содержат только продольно направленные зерна (DS-структура).

В качестве материала для конструктивных элементов, в частности для лопаток 120, 130 турбины и конструктивных элементов камеры 110 сгорания, применяются, например, суперсплавы на основе железа, никеля или кобальта.

Такие суперсплавы известны, например, из документов EP 1204776 B1, EP 1306454, EP 1319729 A1, WO 99/67435 или WO 00/44949.

У направляющей лопатки 130 имеется обращенный к внутреннему корпусу 138 турбины 108 хвостовик направляющей лопатки (здесь не изображен) и находящаяся напротив хвостовика направляющей лопатки головка направляющей лопатки. Головка направляющей лопатки обращена к ротору 103 и установлена на бандажном кольце 140 статора 143.

На фиг. 4 показан вид в перспективе рабочей лопатки 120 или направляющей лопатки 130 турбомашины, которая простирается вдоль продольной оси 121.

Турбомашина может представлять собой газовую турбину самолета или электростанции для выработки электроэнергии, паровую турбину или компрессор.

У лопатки 120, 130 по продольной оси 121 имеется, последовательно, область 400 крепления, примыкающая к ней полка 403, а также перо 406 и торец 415 лопатки.

Если лопатка 130 представляет собой направляющую лопатку 130, она может быть снабжена на своем торце 415 другой полкой (не изображена).

В области 400 крепления лопатки выполнен хвостовик 183, который служит для крепления рабочих лопаток 120, 130 к валу или диску (не изображено).

Хвостовик 183 лопатки выполнен, например, в Т-образной форме. Возможны другие варианты осуществления в виде елки или ласточкина хвоста.

У лопатки 120, 130 имеется входная кромка 409 и выходная кромка 412 для среды, которая обтекает перо 406 лопатки.

У традиционных лопаток 120, 130 во всех областях 400, 403, 406 лопаток 120, 130 применяются, например, цельные металлические материалы, в частности суперсплавы.

Такие суперсплавы известны, например, из документов EP 1204776 B1, EP 1306454, EP 1319729 A1, WO 99/67435 или WO 00/44949.

При этом лопатка 120, 130 может быть изготовлена методом литья, также посредством направленной кристаллизации, методом ковки, методом фрезерования или их комбинаций.

Заготовки с монокристаллической структурой или структурами применяются в качестве деталей машин, которые при эксплуатации подвержены высоким механическим, термическим и/или химическим нагрузкам.

Изготовление такого рода монокристаллических заготовок осуществляется, например, посредством направленной кристаллизации из расплава. При этом речь идет о способах литья, при которых жидкий металлический сплав кристаллизуется с получением монокристаллической структуры, т.е. монокристаллической заготовки, или направленно.

При этом дендритные кристаллы ориентируются вдоль теплового потока и образуют либо столбчатую структуру кристаллических зерен (колоннообразную, т.е. зерна, которые проходят по всей длине заготовки и здесь, выражаясь общепринятым языком, называются направленно кристаллизованными) или монокристаллическую структуру, т.е. вся заготовка состоит из одного единственного кристалла. В этих способах необходимо избегать перехода к глобулярной (поликристаллической) кристаллизации, так как при ненаправленном росте обязательно образуются поперечные и продольные границы зерен, которые сводят на нет хорошие свойства полученного направленной кристаллизацией или монокристаллического конструктивного элемента.

Если речь идет о направленно-кристаллизованных структурах вообще, то под ними подразумеваются как монокристаллы, которые не имеют границ зерен или, в крайнем случае, имеют границы зерен с малыми углами, так и столбчатые кристаллические структуры, у которых, может быть, имеются проходящие в продольном направлении границы зерен, но нет поперечных границ зерен. В случае этих названных во вторую очередь кристаллических структур также говорят о направленно-кристаллизованных структурах.

Такие способы известны из документов US 6024792 и EP 0892090 A1.

Лопатки 120, 130 могут также иметь предлагаемые изобретением защитные слои 7 от коррозии или окисления.

Плотность предпочтительно составляет около 95% теоретической плотности.

На слое MCrAlX (как промежуточном слое или самом наружном слое) образуется защитный слой окиси алюминия (TGO = thermal grown oxide layer, термически выращенный оксидный слой).

На MCrAlX может также находиться теплобарьерный слой, который предпочтительно является самым наружным слоем и состоит, например, из ZrO2, Y2O3-ZrO2, т.е. он не стабилизирован или же частично или полностью стабилизирован окисью иттрия, и/или окисью кальция, и/или окисью магния.

Теплобарьерный слой покрывает весь слой MCrAlX.

С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), в теплобарьерном слое получаются зерна столбчатой формы.

Возможны другие способы нанесения покрытий, например атмосферное плазменное напыление (APS), LPPS, VPS или CVD. Для улучшения стойкости к тепловому удару теплобарьерный слой может содержать пористые, имеющие микро- или макротрещины зерна. То есть теплобарьерный слой предпочтительно является более пористым, чем слой MCrAlX.

Лопатка 120, 130 может быть выполнена полой или цельной. При необходимости охлаждения лопатки 120, 130 она является полой и при необходимости имеет также отверстия 418 для пленочного охлаждения (обозначены штриховой линией).

На фиг. 5 показана камера 110 сгорания газовой турбины 100. Камера 110 сгорания выполнена, например, в виде так называемой кольцевой камеры сгорания, у которой множество расположенных в окружном направлении вокруг оси 102 вращения горелок 107, которые создают пламя 156, выходя в одно общее пространство 154 камеры сгорания. Для этого камера 110 сгорания выполнена в целом в виде кольцеобразной конструкции, которая расположена вокруг оси 102 вращения.

Для достижения сравнительно высокого коэффициента полезного действия камера 110 сгорания рассчитана на сравнительно высокую температуру рабочей среды М, составляющую примерно от 1000°C до 1600°C. Чтобы даже при этих неблагоприятных для материалов рабочих параметрах обеспечить возможность сравнительно долгого срока эксплуатации, стенка 153 камеры сгорания на своей обращенной к рабочей среде Μ стороне снабжена внутренней футеровкой, образованной из элементов 155 теплозащитного экрана.

В связи с высокими температурами внутри камеры 110 сгорания для элементов 155 теплозащитного экрана или, соответственно, для элементов их крепления может быть предусмотрена система охлаждения. Тогда элементы 155 теплозащитного экрана являются, например, полыми и при необходимости имеют также выходящие в пространство 154 камеры сгорания отверстия для охлаждения (не изображены).

Каждый элемент 155 теплозащитного экрана, изготовленный из сплава, оснащен со стороны рабочей среды особенно жаропрочным защитным слоем (слой MCrAlX и/или керамическое покрытие) или изготовлен из огнеупорного материала (цельные керамические кирпичи).

Эти защитные слои 7 могут быть аналогичны лопаткам турбины.

На MCrAlX может также находиться, например, керамический теплобарьерный слой, который состоит, например, из ZrО2, Y2O3-ZrО2, т.е. он не стабилизирован или же частично или полностью стабилизирован окисью иттрия, и/или окисью кальция, и/или окисью магния.

С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), в теплобарьерном слое получаются зерна столбчатой формы.

Возможны другие способы нанесения покрытий, например атмосферное плазменное напыление (APS), LPPS, VPS или CVD. Для улучшения стойкости к тепловому удару теплобарьерный слой может содержать пористые, имеющие микро- или макротрещины зерна.

Восстановление (ремонт) означает, что лопатки 120, 130 турбины, элементы 155 теплозащитного экрана после их применения при необходимости должны освобождаться от защитных слоев (например, посредством пескоструйной обработки). После этого осуществляется удаление коррозионных и/или оксидных слоев или, соответственно, продуктов. При необходимости осуществляется также ремонт трещин в лопатке 120, 130 турбины или элементе 155 теплозащитного экрана. После этого происходит повторное нанесение покрытия на лопатки 120, 130 турбины, элементы 155 теплозащитного экрана и повторное применение лопаток 120, 130 турбины или элементов 155 теплозащитного экрана.


СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 891-900 из 1 427.
13.02.2018
№218.016.26f4

Способ диагностики компонентов пути сети железнодорожных линий рельсового транспорта

Изобретение относится к устройствам диагностики рабочего состояния пути. Система содержит контрольный центр и по меньшей мере одно другое место измерения, при этом компонент пути содержит по меньшей мере одно первое измерительное устройство для измерения первых измерительных значений для...
Тип: Изобретение
Номер охранного документа: 0002644055
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2a05

Отсек пневмооборудования электролокомотива

Изобретение относится к конструкции устройств тормозных систем. Отсек (30) пневмооборудования электролокомотива со встроенным электроагрегатом (20). Электроагрегат установлен между жестяными стенками (31, 32) отсека (30) пневмооборудования и включает электромодули (21, 24, 25) с обеспеченным...
Тип: Изобретение
Номер охранного документа: 0002643090
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a21

Механизм сцепления, предназначенный для устройства накопления энергии в выключателе с газовой изоляцией, и выключатель с газовой изоляцией, в котором используется механизм сцепления

Изобретение относится к механизму сцепления, предназначенному для устройства накопления энергии в выключателе с газовой изоляцией, содержащему: передаточный вал, приводимый в движение посредством выходного вала источника двигательной энергии; соединительный элемент, имеющий конец для...
Тип: Изобретение
Номер охранного документа: 0002643037
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2ad0

Устройство для одновременной передачи данных и мощности по оптическому волноводу

Изобретение относится к технике связи и может использоваться для одновременной полнодуплексной передачи данных и мощности по одиночному оптическому волноводу. Технический результат состоит в повышении пропускной способности передачи сигналов. Для этого в данном устройстве оптический волновод...
Тип: Изобретение
Номер охранного документа: 0002642829
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2ae0

Расположение горелок камеры сгорания

Изобретение относится к области энергетики. Горелка (30) для камеры (16) сгорания газовой турбины, при этом горелка (30) содержит тело (53), имеющее поверхность (64) и ось (50) горелки, топливную трубку (56), воспламенитель (58) и проход (62) или проходы (62) для основного воздушного потока,...
Тип: Изобретение
Номер охранного документа: 0002642971
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2af9

Модуль сопротивления для повышения пускового момента для ротора электрической машины, имеющей обмотку ротора

Изобретение касается модуля сопротивления для повышения пускового момента для ротора электрической машины, имеющей обмотку ротора, и возбудителя ротора и электрической машины, которые имеют соответственно по меньшей мере один такой модуль сопротивления. Для повышения пускового момента...
Тип: Изобретение
Номер охранного документа: 0002642832
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2b1b

Система напорного резервуара с изменяемым по длине компенсационным участком

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности. Система напорного резервуара содержит изменяемый по длине компенсационный участок, который имеет первый и второй элементы (1, 2) резервуара. Оба элемента (1, 2) резервуара подвижны относительно друг...
Тип: Изобретение
Номер охранного документа: 0002642855
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2b4c

Рельсовое транспортное средство

Изобретение относится к железнодорожному транспорту, в частности к рельсовым транспортным средствам. Рельсовое транспортное средство содержит ходовую часть с опирающейся на колесные пары рамой, а также опирающийся на ходовую часть и установленный с возможностью вращения вокруг вертикальной оси...
Тип: Изобретение
Номер охранного документа: 0002643319
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2b77

Система осмотра для осмотра технической установки

Изобретение относится к средствам осмотра технической установки. Технический результат – создание системы осмотра для осмотра технической установки. Для этого предложена система осмотра для осмотра технической установки, которая содержит: шкаф (1), который имеет по меньшей мере один выдвижной...
Тип: Изобретение
Номер охранного документа: 0002643456
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2b86

Уплотнение ротора компрессора

Изобретение касается ротора (1) компрессора, имеющего вал-шестерню (2), включающий в себя несколько расположенных в осевом направлении сегментов (3, 4, 5), и имеющего составное уплотнение (6), уплотняющее вал-шестерню (2). Во избежание дисбалансов ротора (1) компрессора или соответственно для...
Тип: Изобретение
Номер охранного документа: 0002643269
Дата охранного документа: 31.01.2018
Показаны записи 891-900 из 943.
20.01.2018
№218.016.1929

Способ для предоставления службы имен внутри промышленной системы автоматизации и устройство связи

Группа изобретений относится к технологиям предоставления службы имен. Техническим результатом является расширение арсенала технических средств по предоставлению службы имен внутри промышленной системы автоматизации. Предложен способ для предоставления службы имен внутри промышленной системы...
Тип: Изобретение
Номер охранного документа: 0002636113
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1cfd

Защитная система для электрической машины

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности. Электрическая машина имеет корпус (11), который ограничивает внутреннее пространство (12) электрической машины относительно окружающего электрическую машину наружного пространства (13), и защитную...
Тип: Изобретение
Номер охранного документа: 0002640394
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1d9f

Лопастная машина

Изобретение относится к лопастной машине. Лопастная машина содержит внутренний корпус, радиально ограничивающий проточный канал машины. Вокруг внутреннего корпуса расположен нанесенный на наружную сторону стенки внутреннего корпуса теплоизоляционный слой, который представляет собой покрытие...
Тип: Изобретение
Номер охранного документа: 0002640864
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1ddc

Корпус гидроэлектромашины

Изобретение относится к корпусу (CAS) гидроэлектромашины (FEM). Корпус (CAS) проходит вдоль продольной оси (X) и содержит кожух (CAC), крышку (COV) для закрывания отверстия (COP) кожуха (CAC), кольцеобразную вставку (CSP), проходящую в корпусе (CAS) в направлении (CD) периферии, и прилегает к...
Тип: Изобретение
Номер охранного документа: 0002640878
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dee

Аэродинамический профиль и способ его изготовления

Аэродинамический профиль содержит внешнюю и внутреннюю стенки и расположенный между ними охлаждающий канал, служащий для прохождения по нему охлаждающей текучей среды во время работы аэродинамического профиля. На внутренней стенке имеется выступ, отходящий от поверхности внутренней стенки...
Тип: Изобретение
Номер охранного документа: 0002640881
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e2c

Способ охлаждения паровой турбины

Изобретение относится к паротурбинной установке (1) с паровой турбиной (6) и к возможности охлаждения паровой турбины путем принудительного охлаждения. Паротурбинная установка с паровой турбиной, включающей участок впуска пара, участок выпуска пара и размещенную в корпусе турбины аксиально...
Тип: Изобретение
Номер охранного документа: 0002640891
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e34

Изменяемое регулирование предельной мощности газовых турбин

Группа изобретений относится к способу эксплуатации газотурбинной установки, газотурбинной установке и носителю данных. В способе предусмотрены этап определения, по меньшей мере, одного эксплуатационного параметра газотурбинной установки и этап определения предельной величины мощности в...
Тип: Изобретение
Номер охранного документа: 0002640874
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e42

Индуктор для индукционного нагрева

Изобретение относится к индуктору для индукционного нагрева месторождений нефтеносного песка, горючих сланцев или тяжелых фракций нефти. Индуктор (1) для индукционного нагрева посредством токоведущих проводников (2a…f, 4a…f) содержит участки многожильного провода (20, 22, 24, 26),...
Тип: Изобретение
Номер охранного документа: 0002640794
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e76

Электронные модули с жидкостным охлаждением и способы их замены

Изобретение относится к электронному устройству, содержащему электронные модули с жидкостным охлаждением, и способам для быстрого удаления и/или замены электронных модулей. Технический результат - создание электронного модуля с жидкостным охлаждением для электронного устройства, которое может...
Тип: Изобретение
Номер охранного документа: 0002640819
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eae

Силовой элемент на печатной монтажной плате

Изобретение относится к многоэлементному источнику электропитания и, в частности, к силовому элементу на печатной монтажной плате (100), включающую в себя DC шину, расположенную в пределах печатной монтажной платы. Силовой элемент на печатной монтажной плате включает в себя множество...
Тип: Изобретение
Номер охранного документа: 0002641007
Дата охранного документа: 15.01.2018
+ добавить свой РИД