×
10.05.2015
216.013.49f1

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано в электротехнической промышленности, в приборостроении и для декоративных целей при производстве товаров народного потребления. Способ характеризуется тем, что анод из серебра и серебряных сплавов и металлический катод погружают в электролитическую ванну и на них подают напряжение 280-370 В при анодной плотности тока 0,4-0,8 A/см и при температуре водного раствора электролита 20-40 °С, при этом в качестве электролита используют водный раствор, содержащий хлористый аммоний, аммоний лимоннокислый и винную кислоту при следующем соотношении компонентов, мас.%: хлористый аммоний 3-10; аммоний лимоннокислый 2-6; винная кислота 1-3; вода остальное. Технический результат заключается в полировании серебряной или серебросодержащей детали - анода и получении оксида серебра на поверхности катода.
Основные результаты: Способ обработки поверхности металлов, характеризующийся тем, что анод из серебра и серебряных сплавов и металлический катод погружают в электролитическую ванну и на них подают напряжение 280-370 В при анодной плотности тока 0,4-0,8 A/см и при температуре водного раствора электролита 20-40 °С, при этом в качестве электролита используют водный раствор, содержащий хлористый аммоний, аммоний лимоннокислый и винную кислоту при следующем соотношении компонентов, мас. %:

Изобретение относится к электрофизическим и электрохимическим методам обработки материалов и может быть применено в процессах электролитно-плазменного полирования серебряных изделий и для получения оксида серебра в различных областях техники: в электротехнической промышленности, в приборостроении и в декоративных целях при производстве товаров народного потребления. Способ синхронной обработки заключается в том, что одновременно осуществляется полирование серебряного изделия, служащего активным электродом в электролитной плазме при анодном процессе и получении соединения оксида серебра на катоде.

Известен способ электрохимического полирования изделий из серебра и его сплавов (Патент РФ 2117718) посредством анодной обработки импульсным током, включающий их анодное растворение в водных растворах, содержащих соли цианистоводородной кислоты. При этом импульсный ток относительно высокой частоты следования импульсов в диапазоне 0,1-10,0 Гц модулируется импульсами относительно низкой частоты в диапазоне 0,01-0,10 Гц, при этом импульсы, подаваемые на ванну, имеют прямоугольную форму, а их скважность определяется импедансом ванны и находится в пределах 1,0-10,0. В результате полностью удаляется пассивирующая пленка и достигается чистота полированной поверхности Ra=0,16 при равномерном блеске и произвольной конфигурации изделия.

Указанный способ имеет, однако, ряд существенных недостатков: обработка осуществляется импульсным током относительно высокой частоты и особой формы импульса с очень большими требованиями к ним. При этом обработка ведется в водных растворах, содержащих соли цианистоводородной кислоты.

Аналогичным образом осуществляется полирование серебряных изделий (Патент РФ №2233353), отличающееся от предыдущего тем, что электрохимическое полирование производят в водном растворе тиосульфат натрия, уксусной кислоты и уксуснокислого натрия импульсным током при других формах и параметрах импульсов.

Известно (Дураджи В.Н., Парсаданян А.С. Нагрев металлов в электролитной плазме - Кишинев. Штиинца. -1988), что анодный процесс в электролитах состоит из нескольких режимов: первый режим, наблюдаемый на активном электроде (площадь поверхности анода не менее чем в два раза меньше поверхности катода) при прохождении электрического тока небольшой плотности в неподвижном электролите, представляет собой низковольтный электролиз. С повышением напряжения на электродах электролитической ячейки до 60-70 В и плотности тока до 10-16 А/см2 возникает коммутационный режим, характеризуемый тем, что вокруг активного электрода периодически образуется парогазовая оболочка, приводящая к запиранию тока в течение 10-3 - 10-4 с. Третий режим процесса - режим нагрева - в электролитной плазме возникает при напряжениях свыше 80-90 В, когда образуется стационарная парогазовая оболочка вокруг активного электрода, плотность тока уменьшается до 0,8-1,5A/см2, температура активного электрода может изменяться от 400 до 1100°C. Дальнейшее увеличение напряжения на электродах ячейки (в пределах от 250 до 350 В) после установления режима нагрева приводит к росту интенсивности свечения электрических разрядов, толщины парогазовой оболочки, а на отдельных участках активного электрода даже к ее срыву и интенсивному перемещению электролита в виде струи вниз от нижнего конца активного электрода. При этом температура нагрева анода может становиться меньше 100°C, величина электрического тока в цепи уменьшается в 2-2,5 раза, т.е. устанавливается четвертый режим анодного процесса - электрогидродинамический.

Во всех этих режимах происходит полирование поверхности активного электрода (Дураджи В.Н., Брянцев И.В., Товарков А.К. Исследование эрозии анода при воздействии на него электролитной плазмой. - Электронная обработка материалов, 1978, №5, с. 13-17). Коммутационный режим требует больших энергетических затрат и используется в исключительных случаях, например получения острий из труднообрабатываемых материалов или сплавов. В режиме нагрева осуществляется термическая и химико-термическая обработка, что приводит к изменению структуры металлического изделия. Поэтому в настоящее время в промышленности для полирования металлических деталей используется электрогидродинамический режим, при котором температура детали не превышает 100°C и плотность тока на активном электроде в 2-2,5 раза меньше, чем в режиме нагрева.

При реализации способа полировки в электролитной плазме при электродинамическом режиме используют в основном водные растворы солей (при необходимости в зависимости от материала активного электрода можно использовать водные растворы кислот и щелочей). В случаях полирования изделий из серебра или серебряных сплавов используют водный раствор хлористого аммония или хлористого натрия (Дураджи В.Н., Брянцев И.В., Товарков А.К. Исследование эрозии анода при воздействии на него электролитной плазмой. - Электронная обработка материалов, 1978, №5, с. 13-17).

Оксид серебра (I)-Ag2O - это очень важное химическое соединение, которое может использоваться в фармацевтической промышленности как антисептик, при производстве высокоэффективных препаратов для медицины и ветеринарии, имеющих низкую токсичность и аллергенность, а также надежную воспроизводимость физико-химических характеристик. В производстве стекла применятся как краситель. Он также применяется в производстве серебряно-цинковых аккумуляторов, в которых анод представляет собой оксид серебра. Оксид серебра применяется для очистки питьевой воды, используется в художественных цехах для изготовления игрушек и как катализатор.

Известен способ получения оксида серебра (I) при действии едкого натра или едкого калия на раствор азотно-серебряной соли (Ключников Н.Г. Практикум по неорганическому синтезу - М.: Просвещение, 1979. - 271 с.)

по реакции: AgNO3+2KOH=Ag2O+H2O+2KNO3.

В результате реакции выделяется буро-черный осадок оксида серебра (I). Недостатком указанного способа является присутствие в осадке нитратов, что снижает возможность его применения в медицинских целях. Водный раствор оксида серебра (I), полученный указанным способом, можно использовать только наружно как антисептик.

Способ получения концентрата оксидов серебра (Патент РФ №2390583) основан на использовании металлического серебра, дистиллированной воды, источника постоянного тока и миллиамперметра, последовательно подключенного в цепь. Получение концентрата осуществляется следующим образом. Дистиллированную воду, нагретую до 80°C, наливают в чистую стеклянную посуду. В воду погружают кассету ионатора серебра, подключают источник постоянного тока. В начале процесса миллиамперметр показывает нулевые значения (0,00 мА), нет ионов в воде, соответственно нет и тока электронов в цепи. Однако в силу того, что к электродам приложено напряжение, то идет процесс разложения дистиллята на водород, движущийся к катоду, и на кислород. Кислород, движущийся к аноду, вызывает анодное окисление с образованием на электроде пленки оксида серебра (I), который, в свою очередь, самопроизвольно растворяется в воде с диссоциацией на ионы серебра и гидроксил, давая начало электропроводности части раствора, ограниченного объемом внутренней части кассеты. Внутри кассеты появилась обогащенная ионами серебра часть раствора. Кассетой перемешивают раствор, переводя обогащенную часть раствора в общий раствор, тем самым повышая электропроводность общего раствора. Неоднократно повторяя цикл анодного окисления и соответственно обогащения раствора внутренней части кассеты ионатора и перемешивания (выгрузки обогащенной части в общий раствор), достигают эффекта в начале насыщения, а затем перенасыщения раствора. Перемешивание повторяют несколько раз до появления избыточной концентрации в виде буреющего, затем чернеющего коллоидного раствора. Окислы с электродов счищают в приготовляемый раствор. Затем раствор охлаждают до комнатной температуры и отстаивают для кристаллизации окислов серебра.

Задачей, решаемой изобретением, является расширение технологических возможностей за счет обработки серебряных и серебросодержащих сплавов, а также увеличение номенклатуры обрабатываемых деталей.

Технический результат заключается в полировании серебряной или серебросодержащей детали и получении оксида серебра.

Технический результат достигается следующим образом.

Анод из серебра и серебряных сплавов и металлический катод погружают в электролитическую ванну и на них подают напряжение 280-370 В при анодной плотности тока 0,4-0,8 А/см2 и при температуре водного раствора электролита 20-40°C, при этом в качестве электролита используют водный раствор, содержащий хлористый аммоний, аммоний лимоннокислый и винную кислоту при следующем соотношении компонентов, мас. %:

хлористый аммоний 3-10

аммоний лимоннокислый 2-6

винная кислота 1-3

вода остальное

Время обработки зависит от требований, предъявляемых к качеству полировки серебряного изделия, и может изменяться от одной до нескольких минут. Оксид серебра с поверхности катода может сниматься либо после каждой смены серебряной детали, либо при достижении определенной толщины.

Примеры конкретной реализации способа

Пример 1. Активный электрод изготовлялся в виде пластин размером 20×10×3 мм из сплава серебра 925о. Катод выполнен из латуни Л63 в виде пластины 40×50×1 мм. Электроды погружают в электролит состава, мас. %:

хлористый аммоний 6

аммоний лимоннокислый 4

винная кислота 2

вода остальное

Температура электролита поддерживалась 25°C-35°C, напряжение на электродах 340 В при плотности тока на активном аноде 0,5-0,6 А/см2, время обработки 2 мин. После обработки поверхность серебряного анода имеет равномерный зеркальный блеск, а на катоде образовался слой оксида серебра весом 8 миллиграмм.

Пример 2. Активный электрод изготовлялся из проволоки диаметром 2,5 мм, длиной 140 мм из сплава серебра 925o в виде катушки. Катод выполнен из латуни Л63 в виде пластины 40×50×1 мм. Электроды погружают в электролит того же состава. Электролит нагрет до температуры 20-30°C, напряжение на электродах 350 В при плотности тока на активном аноде 0,5-0,6A/см2, время обработки 3 мин. После обработки поверхность анода имеет равномерный зеркальный блеск, а с катода снят слой оксида серебра весом 9 миллиграмм.

Таким образом, изобретение позволяет осуществить полирование активного электрода из серебра или серебряного сплава до зеркального блеска с синхронным образованием оксида серебра на поверхности катода.

Способ обработки поверхности металлов, характеризующийся тем, что анод из серебра и серебряных сплавов и металлический катод погружают в электролитическую ванну и на них подают напряжение 280-370 В при анодной плотности тока 0,4-0,8 A/см и при температуре водного раствора электролита 20-40 °С, при этом в качестве электролита используют водный раствор, содержащий хлористый аммоний, аммоний лимоннокислый и винную кислоту при следующем соотношении компонентов, мас. %:
Источник поступления информации: Роспатент

Показаны записи 181-190 из 234.
10.08.2015
№216.013.6982

Способ определения объема скважины

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины,...
Тип: Изобретение
Номер охранного документа: 0002558563
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69a8

Способ получения карбида хрома crc

Изобретение может быть использовано в металлургии. Для получения карбида хрома CrC смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин. Затем шихту нагревают...
Тип: Изобретение
Номер охранного документа: 0002558601
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a09

Литниковая система для центробежного фасонного литья с вертикальной осью вращения

Изобретение относится к области литейного производства. Литниковая система содержит центральный стояк с расширяющейся нижней частью, горизонтальные литниковые ходы, вертикальный литниковый ход, литниковые питатели отливки, центральный металлоприемник, горизонтальный кольцевой коллектор....
Тип: Изобретение
Номер охранного документа: 0002558698
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cb7

Способ газодинамической отсечки шлака от металла при выпуске плавки из дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к дуговым печам, в которых используют газодинамическую отсечку шлака от металла при выпуске плавки. Отсечку шлака осуществляют посредством двух инертных газовых потоков, первый из которых подают в виде струй азота или аргона снизу в объем...
Тип: Изобретение
Номер охранного документа: 0002559389
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7565

Дуговая сталеплавильная печь с использованием газодинамической отсечки шлака от металла при выпуске плавки

Изобретение относится к области электрометаллургии, в частности к дуговым печам для плавки стали. Печь выполнена с возможностью измерения температуры металла и шлака на выходе из выпускного отверстия летки посредством радиационного пирометра. Устройство для газодинамической отсечки...
Тип: Изобретение
Номер охранного документа: 0002561628
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7568

Способ газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака при выпуске металла через выпускное отверстие летки агрегата. Осуществляют предварительную отсечку шлака внутри рабочего пространства печи путем подачи потока инертного газа на...
Тип: Изобретение
Номер охранного документа: 0002561631
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.756a

Устройство газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака от металла при выпуске его через выпускное отверстие летки дуговой сталеплавильной печи. Устройство снабжено радиационным пирометром, предназначенным для автоматического определения по разнице...
Тип: Изобретение
Номер охранного документа: 0002561633
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75f7

Способ определения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов (варианты)

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической...
Тип: Изобретение
Номер охранного документа: 0002561788
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
Показаны записи 181-190 из 237.
27.07.2015
№216.013.65cb

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур. Прокладка размещена между пуансонами многопуансонного устройства...
Тип: Изобретение
Номер охранного документа: 0002557612
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6894

Способ электролитического получения мелкодисперсных порошков серебра

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм и свободной азотной кислоты 5-20 г/дм при постоянном токе плотностью 1,5-2,0 А/дм. В качестве катодов используют титановые...
Тип: Изобретение
Номер охранного документа: 0002558325
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6982

Способ определения объема скважины

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины,...
Тип: Изобретение
Номер охранного документа: 0002558563
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69a8

Способ получения карбида хрома crc

Изобретение может быть использовано в металлургии. Для получения карбида хрома CrC смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин. Затем шихту нагревают...
Тип: Изобретение
Номер охранного документа: 0002558601
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a09

Литниковая система для центробежного фасонного литья с вертикальной осью вращения

Изобретение относится к области литейного производства. Литниковая система содержит центральный стояк с расширяющейся нижней частью, горизонтальные литниковые ходы, вертикальный литниковый ход, литниковые питатели отливки, центральный металлоприемник, горизонтальный кольцевой коллектор....
Тип: Изобретение
Номер охранного документа: 0002558698
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cb7

Способ газодинамической отсечки шлака от металла при выпуске плавки из дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к дуговым печам, в которых используют газодинамическую отсечку шлака от металла при выпуске плавки. Отсечку шлака осуществляют посредством двух инертных газовых потоков, первый из которых подают в виде струй азота или аргона снизу в объем...
Тип: Изобретение
Номер охранного документа: 0002559389
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7565

Дуговая сталеплавильная печь с использованием газодинамической отсечки шлака от металла при выпуске плавки

Изобретение относится к области электрометаллургии, в частности к дуговым печам для плавки стали. Печь выполнена с возможностью измерения температуры металла и шлака на выходе из выпускного отверстия летки посредством радиационного пирометра. Устройство для газодинамической отсечки...
Тип: Изобретение
Номер охранного документа: 0002561628
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7568

Способ газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака при выпуске металла через выпускное отверстие летки агрегата. Осуществляют предварительную отсечку шлака внутри рабочего пространства печи путем подачи потока инертного газа на...
Тип: Изобретение
Номер охранного документа: 0002561631
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.756a

Устройство газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака от металла при выпуске его через выпускное отверстие летки дуговой сталеплавильной печи. Устройство снабжено радиационным пирометром, предназначенным для автоматического определения по разнице...
Тип: Изобретение
Номер охранного документа: 0002561633
Дата охранного документа: 27.08.2015
+ добавить свой РИД