×
10.05.2015
216.013.48d8

Результат интеллектуальной деятельности: УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ

Вид РИД

Изобретение

№ охранного документа
0002550155
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат -обеспечение улучшенной оценки токов подшипников. В способе и устройстве для измерения токов в подшипнике реализовано измерение токов подшипников без соприкосновения. Измерение напряжения без соприкосновения осуществляется с помощью последовательной схемы из конденсаторов. Таким образом, напряжение подшипника можно особенно хорошо измерять также в диапазоне высоких частот. 2 н. и 14 з.п. ф-лы, 8 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

В машинах могут возникать электрические токи в подшипниках (токи подшипников, в английском: bearing currents), которые значительно уменьшают срок службы этих подшипников. Токи подшипников являются электрическими токами, которые возникают в подшипниках качения или скольжения.

Они вызываются электрическими напряжениями (напряжениями подшипников), которые возникают на основании электрических или магнитных полей рассеяния внутри машины или за счет посторонних токов, которые, приходя извне, протекают в машине. Как только напряжение подшипника превышает напряжение пробоя пленки смазки, то протекает ток.

Отрицательными действиями токов подшипников являются, например:

- сжигание смазки (уменьшение остаточной смазочной способности),

- точечная коррозия в дорожке качения и телах качения и

- в экстремальном случае как результат образование рифлей в дорожке качения.

Эти токи подшипников являются известным в течение десятилетий явлением. Они не поддаются непосредственному измерению на месте и приводят к значительным расходам у пользователей и слишком большой стоимости гарантии у изготовителей. Поэтому существует большая потребность в способе измерения, соответственно, датчиках, которые измеряют токи подшипников и могут их количественно оценивать.

Токи подшипников в электрических машинах, в частности, при работе силовой электроники, могут снижать срок службы подшипников электродвигателя до нескольких процентов. В соответствии с современным уровнем техники поврежденные за счет электрических токов подшипники обнаруживаются и заменяются лишь при проявлении необычности, например, при обнаружении шумов или сгорания смазки. Это приводит часто к простою установки, что вызывает значительные потери.

Поэтому при работе подшипника большой проблемой является распознавание прогнозируемого момента времени выхода из строя и тем самым оптимального момента замены подшипника. Если это осуществлять слишком рано, то это связано с необоснованно высокими затратами на техническое обслуживание, при слишком поздней реакции пользователь имеет большие потери из-за простоя установки.

УРОВЕНЬ ТЕХНИКИ

До настоящего времени количественное измерение токов подшипников осуществляется с помощью классических способов, требующих повторной перестройки электродвигателя (сборки и разборки), или же посредством непосредственного измерения напряжения с помощью контактных щеток. При этом охватываемый диапазон частот обычно составляет единицы или десятки мегагерц. Более высокий диапазон частот не доступен на основании краевых условий монтажа. Кроме того, длительное контролирование возможно лишь в ограниченной мере.

Измерение с помощью излучаемого электромагнитного поля затрудняется ошибочными интерпретациями за счет наводимых помех и едва допускает количественную оценку токов подшипников. Несмотря на высокие потери в течение многих лет не найдено подходящего решения. Таким образом, согласно уровню техники, токи подшипников можно количественно оценивать лишь с помощью экспертов. Однако результаты лишь ограниченно убедительны из-за небольшого диапазона частот, смотри, например, поданную заявителем заявку на патент РСТ/ЕР2010/001150 с названием «Способ обнаружения плазменных токов подшипников», соответственно, чувствительности измерения излучаемого электромагнитного поля от внешних помех.

Уже существует сенсорная техника для измерения токов подшипников в электрических машинах (электродвигателях и генераторах).

При классической технике измерения подшипник изолируют от корпуса электродвигателя. Эту изоляцию перемыкают с помощью проводника. В этом проводнике можно измерять ток подшипника, например, с помощью измерителя тока.

Описание другой возможности приведено в публикации DE 102005027670, которая содержит опосредованное измерение через напряжение на подшипнике и расчет токов подшипника из быстрого падения напряжения во время искровых разрядов. Известно также измерение электромагнитных полей вблизи электродвигателя, например, из публикации WO 2007106015.

Борьба с токами подшипников и вызываемых ими повреждений подшипников часто связана со значительными затратами и лишь с трудом поддается оценке относительно ее достаточности. Несмотря на большие затраты принимаемые меры часто не приводили к желаемой цели.

Классическая техника измерения тока подшипника связана с большими затратами труда и времени. Электродвигатели необходимо перестраивать для выполнения измерения.

Измерение через напряжение на подшипнике требует, как правило, соединения с помощью контактной щетки. Эти контактные щетки требуют технического обслуживания и/или являются дорогими и поэтому не пригодны для длительного контролирования. Кроме того, установка контактной щетки на практике допускается лишь на короткое время.

Измерения в диапазоне ГГц трудно реализуемы, поскольку длина отдельных проводов должна быть слишком малой.

Измерение электромагнитных полей в принципе чувствительно относительно импульсов помех из окружения, например, за счет переключения вентильных преобразователей переменного тока. В результате измерения не признаются изготовителями машин. Кроме того, оценка амплитуды едва возможна, поскольку неопределенно демпфирование при распространении.

Задачей изобретения является решение указанных выше проблем. Должны быть созданы способ измерения и устройство, которые допускают улучшенную оценку токов подшипников. Кроме того, должны быть созданы способ и устройство, которые реализуют измерение токов подшипников без соприкосновения. Задачей изобретения является также создание измерительного датчика и способа, которые пригодны для длительного измерения токов подшипников.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Эта задача решена с помощью устройства согласно пункту 1 формулы изобретения. Устройство предназначено для распознавания тока подшипника в подшипнике электродвигателя или подшипнике приводимой в действие электродвигателем машины, на который опирается вал электродвигателя или приводной вал, при этом вал соединен с электродвигателем, который содержит ротор и окружающий ротор по меньшей мере частично корпус, и вал электродвигателя соединен с муфтой или пригодным для измерения устанавливаемым приспособлением.

Измерение осуществляется в зазоре, в котором установлена по меньшей мере одна пластина, которая имеет средний изолирующий слой и на обращенных к внутренним поверхностям зазора сторонах хорошо электрически проводящие слои. При этом измерение осуществляется по меньшей мере с помощью одной пластины, которая установлена между корпусом и муфтой и состоит из среднего изолирующего слоя и на обращенных к корпусу и муфте сторонах пластины из хорошо электрически проводящих слоев.

Кроме того, задача решена с помощью способа, согласно пункту 11 формулы изобретения.

Согласно способу согласно изобретению токи подшипников измеряют в подшипнике электродвигателя, который служит опорой для вала электродвигателя или приводного вала, при этом вал соединен электрически проводящим образом с электродвигателем, который содержит ротор и окружающий ротор по меньшей мере частично корпус. Вал электродвигателя соединен с муфтой или другим пригодным для измерения приспособлением. В имеющемся на валу или в корпусе подшипника зазоре установлена по меньшей мере одна пластина, которая имеет средний изолирующий слой и на обращенных к внутренним поверхностям зазора сторонах пластины хорошо электрически проводящие слои.

При этом измерение выполняют по меньшей мере на одной пластине, которая установлена между корпусом и муфтой и имеет средний изолирующий слой и на обращенных к корпусу и муфте сторонах пластины хорошо электрически проводящие слои.

Согласно изобретению выполняют измерение напряжения без соприкосновения с помощью последовательной схемы из конденсаторов. Таким образом, напряжение подшипника можно особенно хорошо измерять также в диапазоне высоких частот.

Напряжение подшипника можно измерять со спектральными компонентами вплоть до диапазона ГГц снаружи электродвигателя между муфтой и корпусом электродвигателя посредством измерения напряжения без соприкосновения. Кроме того, на основании обычно небольшого или при необходимости с помощью простых мер любого уменьшаемого расстояния между муфтой электродвигателя и корпусом электродвигателя обеспечивается хорошее отношение сигнала к шуму между сигналом тока подшипника и сигналами внешних помех. Таким образом, измерение является особенно устойчивым к помехам и поэтому пригодным для практики.

Охватываемый при обычных измерениях диапазон частот находится до настоящего времени в диапазоне нескольких или десятков МГц; диапазон более высоких частот был не доступен на основании краевых условий монтажа.

До настоящего времени измерения были лишь ограниченно убедительными на основании небольшого диапазона частот, соответственно, чувствительности измерения излучаемого электромагнитного поля от внешних помех. Однако большой диапазон частот является особенно важным для оценки вредности токов подшипников. Для этого особенно пригоден новый измерительный датчик.

Перечень преимуществ:

- простой и быстрый монтаж,

- пригодность также для кратковременных измерений обслуживающим персоналом (переносной сервисный зонд),

- отсутствие износа,

- пригодность для измерения вплоть до диапазона ГГц,

- относительно высокая стойкость к внешним полям.

Другие предпочтительные варианты выполнения указаны в зависимых пунктах формулы изобретения.

За счет нового измерения напряжения без соприкосновения обеспечивается возможность простого и быстрого монтажа, а также длительного измерения без износа и с небольшими затратами. Хорошая применяемость принципа измерения обеспечивается также в диапазоне высоких частот, в частности свыше 1 ГГц.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Ниже приводится более подробное пояснение изобретения на основе примеров выполнения со ссылками на прилагаемые чертежи, на которых изображено:

Фиг.1 - разрез электродвигателя с муфтой и измерением напряжения подшипника согласно изобретению;

Фиг.2 - возможное выполнение датчика тока подшипника согласно изобретению;

Фиг.3 - разрез подшипника электродвигателя с датчиком;

Фиг.4а-4е - возможные варианты выполнения изобретения.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ВЫПОЛНЕНИЯ

На Фиг.1 показан разрез обычной конструкции с электродвигателем, смонтированным на фундаменте. Электродвигатель соединен через муфту с редуктором, который через другой вал приводит в действие рабочую машину (например, прокатный валок). Напряжение подшипника лежит между валом электродвигателя и корпусом электродвигателя. На основании обычно большого диаметра вала электродвигателя, связанной с этим низкой индуктивности для высокочастотного тока, а также небольшого расстояния между муфтой электродвигателя и корпусом электродвигателя, напряжения между электродвигателем и муфтой, а также между электродвигателем и корпусом приблизительно одинаковы. Это следует из того, что расположенная на стороне электродвигателя часть муфты соединена, как правило, проводящим образом с валом электродвигателя.

Эта система аналогична пластинчатому конденсатору. Таким образом, с помощью хорошо электрически проводящей изолирующей пластины, например металлизированной печатной платы (или аналогичной структуры, которая по своему действию эквивалентна пластинчатому конденсатору), можно выполнять последовательную схему из конденсаторов.

Печатную плату можно предпочтительно одновременно применять для реализации схемы измерения тока подшипника. Поэтому на Фиг.2 показана эта печатная плата из Фиг.1 более детально слева на виде сверху и справа в разрезе. С помощью специальной структуры ее можно использовать для измерений вплоть до диапазона ГГц, поскольку отдельные проводники не приводят к неопределенным высокочастотным характеристикам на основании различных волновых сопротивлений. Вместо этого может быть реализована печатная плата с определенным волновым сопротивлением, которая за счет исключения отражений, в частности в микроволновом диапазоне частот, обеспечивает точные измерения.

Кроме того, может быть реализовано предпочтительное снабжение энергией. Для этого существуют, например, следующие варианты:

- снабжение по проводам;

- снабжение с помощью батареи или аккумулятора,

- снабжение через индуцируемое напряжение. При этом используется вращение муфты относительно электродвигателя. Постоянный магнит создает с помощью динамоэлектрического действия индуцированное напряжение в катушке, которое применяется для снабжения током;

- снабжение из измерительного сигнала (energy harvesting: для этого можно выпрямлять измерительный сигнал, который обычно лежит в диапазоне нескольких вольт).

В одном технически просто реализуемом варианте напряжение заряжает конденсатор. При необходимости, напряжение можно трансформировать вверх с помощью электрической или электронной схемы. Как только конденсатор (например, электролитический или пленочный конденсатор) накапливает достаточную энергию, датчик тока подшипника выполняет измерение и при этом разряжает конденсатор. Затем цикл начинается снова. Время заряда (обычно более длительное) чередуется со временем разряда (обычно более коротким).

В другом варианте выполнения электроника датчика тока подшипника выполнена особенно экономной для тока. В этом случае напряжение с измерительного конденсатора снимается в диапазоне нижних частот, например, с помощью последовательного включения фильтра нижних частот (например, с граничной частотой 1 ГГц), без недопустимого искажения измерительного сигнала. Это возможно, поскольку измерительный сигнал датчика тока подшипника, в частности в диапазоне верхних частот, является значимым для оценки повреждающего подшипник действия.

На Фиг.3 показан разрез подшипника электродвигателя с датчиком тока подшипника согласно изобретению. Напряжение на подшипнике электродвигателя лежит приблизительно также между обращенной к электродвигателю стороной муфты и корпусом электродвигателя. Муфта вместе с корпусом электродвигателя образует пластинчатый конденсатор. За счет введения металлизированной с обеих сторон печатной платы возникает последовательная схема из конденсаторов: CL1 является воздушным конденсатором между муфтой и расположенной на стороне муфты металлизацией печатной платы. CS является введенным конденсатором с диэлектриком, например материалом FR4 печатной платы. CL2 является воздушным конденсатором между расположенной на стороне электродвигателя металлизацией и корпусом электродвигателя. Таким образом, обеспечивается пропорциональная зависимость между напряжением подшипника и напряжением измерительного конденсатора: UCs=kS×UL.

Этот вариант выполнения особенно удобен для монтажа, поскольку датчик можно монтировать под возможно имеющимся защитным кожухом между электродвигателем и муфтой. При использовании ручного зонда отпадает также необходимость охвата вращающегося вала.

Предпочтительно также, что измерительный сигнал является относительно не чувствительным к допускам положения установки. Когда печатная плата смонтирована несколько не посередине, то увеличивается, например, CL1, в то время как CL2 уменьшается. Это приводит к определенной компенсации.

В альтернативном варианте выполнения датчик прилегает одной стороной либо к муфте, либо к электродвигателю. В этом случае отпадает CL1, соответственно, CL2. Однако принципиальное действие остается тем же, за исключением того, что измерение не является больше свободным от потенциала, что может отрицательно сказаться на стойкости к помехам.

В некоторых случаях муфта не пригодна для измерения. Например, когда муфта является слишком небольшой или расположена слишком далеко. В этих случаях можно монтировать на оси металлический диск, который выполняет функцию пластинчатого конденсатора, или наоборот, потенциал корпуса электродвигателя за счет устанавливаемого приспособления приближается к диску сцепления (что имеет то преимущество, что это возможно даже при вращающемся вале).

Для переносного варианта часть печатной платы может быть выполнена в качестве рукоятки.

Ниже приводится описание других предпочтительных примеров выполнения изобретения для калибровки.

Для автоматического измерения пути датчик измеряет путь между муфтой и датчиком и между электродвигателем и датчиком, например, с помощью оптического или акустического способа. На основании удалений можно автоматически вычислять участвующие емкости и тем самым коэффициент пересчета между напряжением подшипника и напряжением на измерительном конденсаторе.

Для измерения пути вручную обслуживающий персонал, который осуществляет установку датчика, применяет датчик в качестве удерживаемого в руках прибора и определяет указанные выше расстояния между муфтой, соответственно, электродвигателем и датчиком вручную, например, с помощью линейки. Эти данные задаются в качестве известных в систему датчика и заносятся в долговременную память. Вычисление коэффициента перерасчета осуществляется аналогично автоматическому измерению пути.

В третьем варианте, а именно в автоматической калибровке емкостей, датчик измеряет непосредственно влияние емкости воздуха с помощью заданного сигнала тестирования. Например, приводится в колебания колебательный контур, который содержит емкость измерительного конденсатора и индуктивность при определенной частоте. За счет внешней емкости (конденсаторов воздушного зазора) колебательный контур расстраивается и выполняет колебания на другой частоте. Эта частота измеряется согласно уровню техники очень точно и с небольшими затратами. На основе изменения частоты и известной емкости измерительного конденсатора можно определять внешнюю емкость и тем самым осуществлять калибровку коэффициента пересчета между напряжением на измерительном конденсаторе и напряжением подшипника. В данном случае определение также выполняется либо один раз с долговременным запоминанием, либо перед определенными измерениями.

Датчик может сам, например, на основании глубоких падений напряжения вала распознавать токи подшипника и определять их величину. Желательно включение во внешнюю сеть для обработки. Данные датчика можно передавать по радио, по проводам, с помощью переносной флэшки или посредством считывания индикатора для последующей цифровой обработки данных. Во внешней сети осуществляется оценка измерительных данных, например, автоматически с отображением в гистограмме. Таким образом, можно оценивать работу установки после технического обслуживания, например, относительно правильно выполненного заземления электродвигателя при реконструкции установки. Это предотвращает большие экономические потери при работе установки.

На Фиг.4а-4е показаны различные положения, в которых можно использовать способ, соответственно, устройство, согласно изобретению, для измерения токов подшипника.

На всех фигурах приводной электродвигатель находится на левой стороне, от этого электродвигателя проходит вал. На Фиг.4а-4с соответствующий подшипник находится в электродвигателе. В противоположность этому на Фиг.4d и 4е подшипник находится в подлежащей приводу рабочей машине.

На Фиг.4а показана простая конструкция, в которой измерительный зазор лежит между электродвигателем и муфтой, как уже было показано на Фиг.3.

На Фиг.4b измерительный зазор создан с помощью установленного на валу диска вместо муфты.

Если расстояние между электродвигателем и муфтой слишком велико, то оно может быть уменьшено с помощью дополнительного приспособления с соединением с корпусом электродвигателя, как это показано на Фиг.4с.

Измерение тока подшипника можно также выполнять не в электродвигателе, а на другом конце вала у рабочей машины. Для этого аналогично Фиг.4а применяется зазор между муфтой и рабочей машиной, как показано на Фиг.4d. Аналогично Фиг.4b, на Фиг.4е подходящий измерительный зазор образован с помощью устанавливаемого на валу диска.


УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ ТОКОВ В ПОДШИПНИКЕ
Источник поступления информации: Роспатент

Показаны записи 441-450 из 1 428.
10.09.2015
№216.013.7a6b

Способ определения диаметра оснащенного рабочими лопатками ротора лопаточной машины

Изобретение касается способа определения диаметра оснащенного рабочими лопатками ротора лопаточной машины. Способ характеризуется тем, что предлагается приводить ротор, снабженный венцом рабочих лопаток, во вращательное движение и вне области венца рабочих лопаток расположить предусмотренное...
Тип: Изобретение
Номер охранного документа: 0002562928
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a8e

Газонапорный выключатель нагрузки

Выключатель нагрузки имеет первый (4) и второй (5) контактные элементы, между которыми расположена зона электрической дуги, в которую впадает питающий канал (13), соединяющий зону электрической дуги с накопительным резервуаром (14) для горячего газа, который, в свою очередь, соединен с...
Тип: Изобретение
Номер охранного документа: 0002562963
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7acd

Инвертор для высоких напряжений

Изобретение относится к области электротехники. Для того чтобы предоставить субмодуль (7) для образования инвертора (1) для области высоких напряжений с первым субблоком (5), который содержит первый накопитель (18) энергии, включенное параллельно первому накопителю (18) энергии первое...
Тип: Изобретение
Номер охранного документа: 0002563034
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c99

Устройство для выделения ферромагнитных частиц из суспензии (варианты)

Группа изобретений относится к вариантам устройства для выделения ферромагнитных частиц из суспензии. По одному из вариантов устройство для выделения ферромагнитных частиц из суспензии содержит трубчатый реактор, имеющий вход и выход, и предназначенный для прохождения через него потока...
Тип: Изобретение
Номер охранного документа: 0002563494
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d00

Способ и устройство для оценки повреждения подшипников качения, в частности, в электрических машинах, питаемых через преобразователь частоты переменного тока

Изобретения относятся к измерительной технике, в частности к устройствам для оценки повреждения подшипника качения электрической машины. При реализации заявленного способа электрическая машина, содержащая контролируемый подшипник качения, электрически подключена к инвертору с промежуточным...
Тип: Изобретение
Номер охранного документа: 0002563597
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d07

Система датчиков для измерения крутящего момента и вал с системой датчиков для измерения крутящего момента

Изобретение относится к измерительной технике, в частности к системе датчиков для измерения крутящего момента и валу, снабженному системой датчиков. Система датчиков содержит датчик крутящего момента, который расположен на каретке с электроприводом, датчик расстояния, который расположен на той...
Тип: Изобретение
Номер охранного документа: 0002563604
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d51

Способ функционирования мельницы

Изобретение относится к способам управления работой мельниц и может быть использовано в устройствах для их контроля и регулирования. Способ заключается в том, что с помощью регулятора числа оборотов осуществляют управление приводом для корпуса мельницы, установленного с возможностью вращения,...
Тип: Изобретение
Номер охранного документа: 0002563678
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d69

Электрическая машина

Изобретение относится к электрической машине. Техническим результатом является улучшение охлаждения электрической машины. Предложена электрическая машина (100), содержащая: статор (107) и ротор (101), при этом ротор (101) имеет полый вал (102), при этом с помощью полого вала (102) образовано...
Тип: Изобретение
Номер охранного документа: 0002563702
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7fbe

Вагонный замедлитель, снабженный по меньшей мере одним вертикально подвижным тормозным элементом, а также способ определения его текущего положения

Настоящее изобретение касается вагонного замедлителя (10; 100), снабженного по меньшей мере одним вертикально подвижным, в частности, опускаемым тормозным элементом (20, 21; 120). Вагонный замедлитель (10; 100) имеет сенсор (50; 150) наклона, который расположен таким образом, что на основании...
Тип: Изобретение
Номер охранного документа: 0002564299
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fde

Смесительное устройство для смешивания агломерирующего порошка в суспензию

Изобретение касается смесительного устройства для смешивания агломерирующего порошка в суспензию. Смесительное устройство включает форсунку для создания струи суспензии, загрузочное устройство для ввода порошка в струю суспензии, смесительную камеру, которая устроена, чтобы смешивать частицы с...
Тип: Изобретение
Номер охранного документа: 0002564331
Дата охранного документа: 27.09.2015
Показаны записи 441-450 из 943.
27.08.2015
№216.013.74d9

Защитный поддон для высокоскоростных поездов

Изобретение относится к железнодорожному транспорту, в частности к высокоскоростным поездам. Защитный поддон для высокоскоростных поездов расположен под полом (1) вагона по всей пространственной длине подполья и выполнен в виде каркаса (2), который обшит защитным полом (3) и боковыми несущими...
Тип: Изобретение
Номер охранного документа: 0002561488
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7587

Исполнительный элемент для тормозной системы рельсового транспортного средства

Исполнительный элемент (7) для рельсового транспортного средства содержит блок (6) определения заданного значения, причем блок (6) определения заданного значения на выходе (А1) предоставляет заданное значение (SSoll) или скорректированное под воздействием редуцирующего сигнала (RS) устройства...
Тип: Изобретение
Номер охранного документа: 0002561662
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7658

Способ и устройство для управляющей коммуникации между сцепленными частями железнодорожного состава

Изобретение относится к области автоматики и телемеханики и может использоваться для управления коммуникациями между сцепленными частями железнодорожного состава. Техническое решение включает в себя сцепленные части железнодорожного состава, имеющие механические и электрические (ЕК) сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002561885
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76a0

Элемент теплозащитного экрана

Элемент теплозащитного экрана камеры сгорания газотурбинного двигателя (14) с боковой стенкой (16), имеющей углубление (4) с ориентированным в направлении несущей конструкции (17) пропускным отверстием (30). В это углубление (4) может устанавливаться крепежный винт (18), который при этом...
Тип: Изобретение
Номер охранного документа: 0002561957
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76a2

Многоступенчатый компрессор с встроенной передачей

Изобретение относится к многоступенчатому компрессору с встроенной передачей, содержащему первую рабочую ступень, вторую рабочую ступень и передачу, через которую соединены друг с другом обе рабочие ступени с различной скоростью вращения. Высокий коэффициент полезного действия компрессора с...
Тип: Изобретение
Номер охранного документа: 0002561959
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7723

Транспортное средство с текстильным каналом

Изобретение относится к транспортному средству, а именно к рельсовым транспортным средствам, оборудованным кондиционерами. Транспортное средство содержит кузов вагона, расположенную в кузове вагона внутреннюю облицовку и проходящий между кузовом вагона и внутренней облицовкой текстильный канал....
Тип: Изобретение
Номер охранного документа: 0002562088
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777a

Чугун, содержащий ниобий, и конструктивный элемент

Изобретение относится к области металлургии, в частности к чугунам с шаровидным графитом. Чугун содержит, вес. %: кремний 2,0-4,5, углерод 2,9-4,0, ниобий 0,05-0,7, молибден 0,3-1,5, необязательно кобальт 0,1-2,0, марганец ≤0,3, никель ≤0,5, магний ≤0,7, фосфор ≤0,05, сера ≤0,012, хром ≤0,1,...
Тип: Изобретение
Номер охранного документа: 0002562175
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77b2

Наружная противокоронная защита для электрической машины

Изобретение относится к наружной противокоронной защите для электрической машины, в частности к наружной противокоронной защите для окруженного основным изолирующим слоем проводящего стержня электрической машины. Технический результат заключается в создании противокоронного слоя малой толщины...
Тип: Изобретение
Номер охранного документа: 0002562231
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77be

Обнаружение и локализация неисправностей в запитываемой с одной стороны линии энергоснабжения

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и надежности защиты. Линия (10а) энергоснабжения разделена переключающими устройствами (13а-d) на множество участков (14а-с), причем с каждым переключающим устройством (13а-d) ассоциировано...
Тип: Изобретение
Номер охранного документа: 0002562243
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77c3

Вакуумная электронно-лучевая трубка

Вакуумная электронно-лучевая трубка (1) имеет корпус с двумя расположенными и выполненными симметрично относительно средней плоскости (S) областями (9, 10) корпуса из изолирующего материала. Каждая из этих областей (9, 10) включает части (11-16) корпуса из изолирующего материала. Между каждыми...
Тип: Изобретение
Номер охранного документа: 0002562248
Дата охранного документа: 10.09.2015
+ добавить свой РИД