×
10.05.2015
216.013.4895

Результат интеллектуальной деятельности: СКВАЖИННЫЙ ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном скважинном импульсном нейтронном генераторе трансформаторы (2) и (3) залиты компаундом с диэлектрической проницаемостью, уменьшающейся с ростом температуры, конденсаторы (4), (6) и (7) залиты компаундом с диэлектрической проницаемостью, увеличивающейся с ростом температуры. При этом температурный компенсатор включает в себя резиновую мембрану (13), размещенную в корпусе (9) компенсатора и разделяющую компенсатор на две полости, одна из которых соединена с жидким диэлектриком, а другая заполнена инертным газом под давлением. Техническим результатом является стабилизация нейтронного потока в широком диапазоне температур, уменьшение габаритов и массы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, предназначенного для проведения геофизических исследований скважин импульсными нейтронными методами.

Известен генератор нейтронов (см., например, Геофизическая аппаратура. Недра, вып. 43, 1970 г., с. 132-146), содержащий нейтронную трубку и высоковольтный источник напряжения питания, выполненный на накопительном конденсаторе, включенном между высоковольтным источником питания и первичной обмоткой высоковольтного импульсного трансформатора (в случае биполярного питания - первичными обмотками высоковольтного импульсного трансформатора). Генератор нестабилен в диапазоне рабочих температур и имеет малый ресурс работы.

Известен скважинный импульсный нейтронный генератор, содержащий вакуумную нейтронную трубку и электрическую схему питания вакуумной нейтронной трубки, состоящую из двух высоковольтных трансформаторов, конденсатора накопительного, схемы формирования ускоряющего импульса, конденсатора источника питания нейтронной трубки и зарядного дросселя, размещенных в герметичном корпусе, в котором все элементы электрической схемы питания вакуумной нейтронной трубки выполнены в виде тел вращения с центральными отверстиями, соединены между собой механически и электрически с помощью резьбовых электрических контактов с центральными отверстиями, а с вакуумной нейтронной трубкой - через чашеобразные резьбовые втулки с центральным и боковыми отверстиями, установленные на мишени и аноде вакуумной нейтронной трубки, вакуумная нейтронная трубка и электрическая схема питания помещены в полый тонкостенный цилиндр с наружным диаметром, меньшим внутреннего диаметра герметичного корпуса, между наружной стенкой тонкостенного цилиндра и внутренней стенкой герметичного корпуса образована наружная полость, заполненная жидким диэлектриком, сообщающаяся с внутренней полостью, образованной центральными отверстиями в охлаждаемых элементах электрической схемы питания вакуумной нейтронной трубки. Патент Российской Федерации №2368024, МПК: G21G 4/02, 2009 г. Прототип.

В известном импульсном нейтронном генераторе все элементы электрической схемы расположены последовательно друг за другом, что приводит к увеличению габаритных размеров и массы генератора.

Изоляция конденсаторов выполнена пленочными диэлектриками, пропитанными жидким диэлектриком с малой диэлектрической проницаемостью, что приводит к увеличению объемов конденсаторов, при требуемой величине емкости и электрической прочности.

Температурный компенсатор выполнен на металлическом сильфоне, служащем для компенсации изменяемого объема жидкого диэлектрика при изменении температуры. Для обеспечения термокомпенсации в широком диапазоне рабочих температур длина сильфона изменяется в широких пределах и достигает третьей части от длины всего генератора, что приводит к существенному увеличению габаритов и массы генератора.

Кроме того, при работе импульсного нейтронного генератора в диапазоне температур -50°C+120°C изменяется форма импульса ускоряющего напряжения за счет температурного изменения диэлектрической проницаемости изоляции конденсаторов и трансформаторов, что приводит к изменению емкостей конденсаторов, динамических емкостей высоковольтных трансформаторов и изменению длительности нейтронного импульса и потока нейтронов.

Задачей изобретения является создание стабильного импульсного нейтронного генератора с меньшими габаритами и массой.

Техническим результатом изобретения является стабилизация нейтронного импульса в широком диапазоне температур, уменьшение габаритов и массы.

Технический результат достигается тем, что в скважинном импульсном нейтронном генераторе, содержащем вакуумную нейтронную трубку и электрическую схему питания нейтронной трубки, состоящую из двух высоковольтных трансформаторов, двух конденсаторов накопительных, конденсатора источника питания нейтронной трубки, зарядного дросселя, а также температурный компенсатор, размещенные в герметичном металлическом корпусе, залитом жидким диэлектриком, трансформаторы залиты компаундом с диэлектрической проницаемостью, уменьшающейся при росте температуры, конденсаторы залиты компаундом с диэлектрической проницаемостью, увеличивающейся при росте температуры, температурный компенсатор включает в себя резиновую мембрану, размещенную в корпусе компенсатора и разделяющую компенсатор на две полости, одна из которых соединена с жидким диэлектриком, а другая заполнена инертным газом под давлением.

Сущность изобретения поясняется чертежом.

На чертеже схематично представлен продольный разрез скважинного импульсного нейтронного генератора, где: 1 - вакуумная нейтронная трубка, 2 - высоковольтный трансформатор отрицательной полярности, 3 - высоковольтный трансформатор положительной полярности, 4 - конденсатор источника питания нейтронной трубки, 5 - зарядный дроссель, 6 и 7 - конденсаторы накопительные, 8 - металлический корпус генератора, 9 - металлический корпус термокомпенсатора, 10 - полость, залитая жидким диэлектриком, 11 - полость, заполненная газом под давлением, 12 - проходное отверстие, 13 - резиновая мембрана, 14 - клапан, 15 - проходные изоляторы.

Электропитание вакуумной импульсной нейтронной трубки 1 выполнено по биполярной схеме. Накопительные конденсаторы 6 и 7 расположены коаксиально поверх обмоток соответствующих высоковольтных трансформаторов 2 и 3, а дроссель 5 расположен коаксиально поверх конденсатора источника 4. Изоляция моточных элементов импульсного нейтронного генератора выполнена бумажно-пленочными диэлектриками с последующей пропиткой их различными твердеющими изоляционными компаундами. Трансформаторы 2 и 3, дроссель 5 пропитаны твердеющими диэлектриками с диэлектрической проницаемостью, уменьшающейся при росте температуры (например, компаунды на основе кремнийорганических смол с наполнителем). В предлагаемом генераторе выбран компаунд К67 или К43. Тип компаунда для конденсаторов 6 и 7 выбран из условий обеспечения электрической прочности и большой диэлектрической проницаемости, при которой объем конденсаторов, а значит, и всего генератора минимален. В предлагаемом генераторе выбран компаунд ПК-11.

При работе импульсного нейтронного генератора и увеличении температуры происходит рост емкостей накопительных конденсатора 6 и 7, а также уменьшение динамических емкостей трансформаторов 2 и 3, что приводит к стабилизации импульса ускоряющего и нейтронного импульса во всем диапазоне рабочих температур. Действительно, при увеличении температуры увеличивается активное сопротивление обмоток трансформаторов и обкладок конденсаторов, что обуславливает снижение амплитуды импульса ускоряющего напряжения. Однако увеличение емкостей накопительных конденсаторов компенсирует это снижение амплитуды. При этом уменьшение динамических емкостей трансформаторов компенсирует тот рост длительности ускоряющего напряжения, который должен был произойти за счет увеличения емкостей накопительных конденсаторов.

Для обеспечения электрической прочности и теплового режима нейтронная трубка и все элементы схемы ее питания размещены в герметичном корпусе 8, залитом жидким диэлектриком. В качестве жидкого диэлектрика использовано масло ТКп, имеющее хорошие диэлектрические свойства. Одним из наиболее подходящих жидких диэлектриков является кремнийорганическая жидкость ПФМС-2/5 Л, обладающая аналогичными с маслом ТКп диэлектрическими свойствами 50 кВ/2,5 мм.

Температурный компенсатор объемного изменения жидкости включает в себя резиновую мембрану 13, размещенную в корпусе компенсатора 9. Мембрана 13 разделяет объем корпуса 9 на две герметичные полости, одна из которых 10 соединена с жидким диэлектриком через проходное отверстие 12, а другая 11 заполнена инертным газом под давлением через клапан 14. Давление в полости 11 при минимальных рабочих температурах и уменьшении объема жидкости составляет не менее 0,5 ати, при максимальных температурах давление в генераторе достигает не более 6 ати. Внешнее питание и импульсы запуска подают через керамические проходные изоляторы 15.

Генератор работает следующим образом. При срабатывании коммутирующего элемента (на чертеже не показан) накопительные конденсаторы 5, заряженные до напряжения 4,5 кВ, разряжаются через первичные обмотки трансформаторов 2 и 3. На вторичных обмотках формируются импульсы напряжения 50-60 кВ длительностью 4 мкс, отрицательной и положительной полярности и подаются на импульсную нейтронную трубку. Трансформатор положительной полярности 3 формирует импульс напряжения поджига ионного источника, в результате которого происходит разряд конденсатора источника 4 через анод и катод нейтронной трубки 1. Образовавшиеся ионы дейтерия бомбардируют мишенный электрод вакуумной нейтронной трубки 1. На мишени в результате реакции 1Д2+1T32He4+n образуются нейтроны с энергией 14 МэВ и вторичные электроны.

Выполнение скважинного генератора в соответствии с предложенным техническим решением позволило уменьшить габариты и массу скважинного нейтронного генератора приблизительно на 25% и стабилизировать нейтронный импульс в диапазоне рабочих температур.


СКВАЖИННЫЙ ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР
Источник поступления информации: Роспатент

Показаны записи 181-190 из 192.
09.06.2019
№219.017.79aa

Блок излучателя нейтронов

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, предназначенным для проведения геофизических исследований нефтяных, газовых и рудных скважин. Блок излучателя нейтронов содержит нейтронную трубку, схему питания нейтронной трубки с...
Тип: Изобретение
Номер охранного документа: 0002399977
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.79c1

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к тензорезистивным датчикам давления, и предназначено для измерения разности давления жидкости и газов. Техническим результатом изобретения является повышение стабильности датчика разности давлений. Датчик разности давления содержит...
Тип: Изобретение
Номер охранного документа: 0002395793
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7f6f

Генератор меченых нейтронов

Использование: для исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов. Сущность: заключается в том, что генератор меченых нейтронов содержит герметичный корпус, в котором установлены источник ионов, источник газообразного...
Тип: Изобретение
Номер охранного документа: 0002467317
Дата охранного документа: 20.11.2012
09.06.2019
№219.017.7f9c

Электростатический экран

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей. Цилиндрический электростатический экран электрофизической аппаратуры выполнен из высокоомного материала композитов...
Тип: Изобретение
Номер охранного документа: 0002466473
Дата охранного документа: 10.11.2012
19.06.2019
№219.017.8b0b

Устройство дуговой защиты с определением местоположения и мощности электрической дуги

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Устройство содержит N фотодетекторов, подключенных к входам аналого-цифровых преобразователей (АЦП) микропроцессора, N выходов которого подключены к входам соответствующих N исполнительных...
Тип: Изобретение
Номер охранного документа: 0002446535
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.9a92

Сигнализатор избыточного давления, способ формирования профиля мембраны для сигнализатора избыточного давления

Сигнализатор избыточного давления и способ формирования профиля мембраны для него относятся к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначены для предотвращения перегрузки. В корпусе сигнализатора избыточного давления, в котором...
Тип: Изобретение
Номер охранного документа: 0002245526
Дата охранного документа: 27.01.2005
29.06.2019
№219.017.9ff7

Комплекс программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности, за счет уменьшения задержки переключения на резерв при отказах сетевого оборудования и исключения потери данных. Комплекс программно-аппаратных средств автоматизации контроля и управления...
Тип: Изобретение
Номер охранного документа: 0002450305
Дата охранного документа: 10.05.2012
29.06.2019
№219.017.a0e2

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности, быстрое переключение на резервное оборудование, освобождение вычислительных ресурсов от задач управления резервированием. Он достигается тем, что в комплексе средств автоматизации...
Тип: Изобретение
Номер охранного документа: 0002431174
Дата охранного документа: 10.10.2011
29.06.2019
№219.017.a0f6

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности системной шины, повышение скорости сбора данных технологического процесса, повышение отказоустойчивости. Он достигается тем, что в комплексе программно-аппаратных средств...
Тип: Изобретение
Номер охранного документа: 0002430400
Дата охранного документа: 27.09.2011
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
Показаны записи 171-171 из 171.
16.05.2023
№223.018.6436

Импульсный нейтронный генератор

Изобретение относится к импульсному нейтронному генератору. Генератор содержит размещенные в металлическом корпусе, залитом диэлектриком, вакуумную нейтронную трубку с ее схемой питания и со схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, зарядный...
Тип: Изобретение
Номер охранного документа: 0002773038
Дата охранного документа: 30.05.2022
+ добавить свой РИД