×
27.04.2015
216.013.4690

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОТОКА НАГРЕТОГО ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002549568
Дата охранного документа
27.04.2015
Аннотация: Изобретение относится к области термометрии и предназначено для определения максимальных температур в камерах сгорания авиадвигателей различного назначения. Газодинамический насадок для определения температуры газа включает проточную камеру с входным и выходным патрубками и жиклерами в них. Предварительно задают площади жиклеров и определяют их характеристики с выполнением калибровок по расходу, учитывающих поправки на тепловое расширение диаметров сопел жиклеров и на зависимость коэффициентов расхода жиклеров от числа Рейнольдса. Затем насадок вводят в заданную точку потока, осуществляют отбор пробы газа через жиклер входного патрубка и пропускают через насадок. Понижая давление в выходном патрубке, устанавливают на жиклерах сверхкритические перепады давлений. При этом измеряют давление газа датчиком, установленным в потоке перед входным патрубком, давление и температуру газа датчиками внутри проточной камеры перед жиклером выходного патрубка и датчиком давления газа в выходном патрубке после жиклера. По полученным данным определяют температуру газа в заданной точке потока. Технический результат - повышение точности определения температуры потока газа. 1 ил.
Основные результаты: Способ определения температуры потока нагретого газа, заключающийся в том, что газодинамический насадок для определения температуры потока газа, включающий проточную камеру с входным и выходным патрубками и жиклерами в них, вводят в заданную точку потока, осуществляют отбор пробы газа через жиклер входного патрубка и пропускают пробу через насадок, при этом одновременно измеряют давление газа в потоке перед входным патрубком и внутри камеры перед жиклером выходного патрубка, а по полученным данным определяют температуру газа по заданному соотношению, отличающийся тем, что задают площади жиклеров и определяют их характеристики с выполнением калибровок по расходу, учитывающих поправки на тепловое расширение диаметров сопел жиклеров и на зависимость коэффициентов расхода (µ) жиклеров от числа Рейнольдса, в виде соотношения ,где µ - коэффициент расхода жиклера входного патрубка;µ - коэффициент расхода жиклера выходного патрубка;F - площадь проходного сечения жиклера входного патрубка;F - площадь проходного сечения жиклера выходного патрубка,далее, понижая давление в выходном патрубке, устанавливают на жиклерах сверхкритические перепады давлений, при этом измеряют дополнительно температуру газа внутри камеры перед жиклером выходного патрубка и давление газа после этого жиклера, по полученным данным определяют температуру газа в точке отбора пробы по соотношению: ,где - температура газа перед жиклером выходного патрубка; ; ;m, m- коэффициенты, учитывающие изменения показателя адиабаты газа k и газовой постоянной R для входного и выходного жиклеров насадка;R, R - газовые постоянные; - полное давление газа на входе в насадок; - полное давление газа на входе перед жиклером выходного патрубка:k - показатель адиабаты газа на входе в насадок;k - показатель адиабаты газа на входе перед жиклером выходного патрубка.

Изобретение относится к области экспериментальной и промышленной термогазодинамики, а именно к термометрии нагретых до высокой температуры потоков газа, например, в камерах сгорания газотурбинных двигателей (ГТД), форсажных камерах (ФК) турбореактивных двухконтурных двигателей (ТРДДФсм), камерах сгорания прямоточных воздушно-реактивных двигателей (ПВРД), на выходе из которых надежное локальное измерение температур газообразного потока продуктов сгорания сталкивается с серьезными затруднениями.

В большинстве испытаний форсажных камер и камер сгорания ПВРД измерить непосредственно температуру торможения газообразного потока продуктов сгорания на срезе сопла с помощью термопар для высокотемпературных измерений, например на основе платины и родия, не представляется возможным, поскольку платина является катализатором для догорания несгоревших остатков топлива, что искажает результаты испытаний. Для определения локального значения температуры потока газа использование результатов химического анализа отбираемых проб продуктов сгорания сопряжено с большими затратами времени и средств.

Известен способ измерения температурного поля потока выхлопных газов на испытательном стенде газотурбинных двигателей с помощью термопар (SU №169826, 25.03.1064). Отличительным признаком является то, что устанавливают термопары между двигателем и выхлопной системой, выполняют замер температурного поля в этом сечении и полученные результаты пересчитывают с учетом закрутки газового потока. Способ повышает точность измерений и сокращает затраты времени на испытания. Однако данный способ неприменим для газовых потоков с высокими значениями температур, которые характерны для современных двигателей.

Известен способ определения температуры газового потока (патент SU №1425474, 23.03.1987). Устройство для измерения температуры газового потока содержит водоохлаждаемый корпус, трубу измерительного канала, трубу установочного канала и два термопреобразователя. Термопреобразователи, спаи которых выведены в трубу измерительного канала, размещены в трубе установочного канала. Причем труба измерительного канала и труба установочного канала на рабочем участке сопряжены между собой с образованием общего канала. Способ осуществляется следующим образом. Термопреобразователи задвигаются на максимальную глубину рабочего участка. Затем включается водоохлаждение, и устройство вводится в исследуемую зону топки или камеры сгорания, где температура газа порядка 2000 К. Записывают показания термопреобразователя, по которому определяют температуру стенки трубы измерительного канала. При отсутствии отсоса температура газа в отсосном канале равна температуре охлаждаемой стенки. Температура стенки равна, например, 300 К. Включают отсос. Измеряемый газ течет по трубе измерительного канала со скоростью, например, 70 м/с. При этом температура газа снижается по длине отсосного канала за счет интенсивного охлаждения. Далее термопреобразователи перемещают к сечению входа трубы измерительного канала. Изменяют скорость отсоса охлажденного газа по измерительному каналу. Измеряют температуры охлажденного газа в указанных сечениях и определяют температуру Тг газового потока по заданной зависимости. Способ повышает точность определения температуры газового потока и упрощает процесс измерений. Однако данный способ трудно применим для измерения температур потока газа более 2000 К. Кроме этого, в общем случае, для корректной оценки интенсивности охлаждения стенок измерительного канала необходимо надежно определять числа Нуссельта и Рейнольдса, что сопряжено со значительными методическими и техническими трудностями и, в итоге, приводит к увеличению времени и промежуточных затрат на обработку информации.

Наиболее близким к заявленному техническому решению является способ измерения температуры потока газа (SU №480926, 20.11.1972).

Способ заключается в том, что газодинамический насадок для измерения температуры, включающий проточную камеру с входным и выходным патрубками с жиклерами в них и клапаном за выходным жиклером, вводят при закрытом клапане в заданную точку потока. Пропускают газ через входной патрубок с жиклером в камеру насадка. Измеряют давление газа перед камерой, давление газа и скорость изменения давления внутри камеры в течение времени переходного процесса стабилизации давления. Далее, при открытом клапане измеряют одновременно давление перед камерой и внутри камеры и по полученным данным определяют температуру газа по заданному соотношению. Данный способ повышает точность определения температуры потока газа. Однако он также требует дополнительного времени для стабилизации давления газа в камере, а надежная временная фиксация наступления момента стабилизации давления в данном способе не предусмотрена.

В основу изобретения положено решение задач:

- разработка надежного способа определения локального значения температуры потока газа нагретого до 2700 К - максимальных температур в камерах сгорания современных авиадвигателей различного назначения;

- повышение точности локального определения температуры потока нагретого газа;

- снижение времени и стоимости газодинамических натурных и модельных испытаний камер сгорания за счет сокращения времени выполнения локальных измерений температур газового потока.

Для решения поставленных задач способ определения температуры потока нагретого газа заключается в том, что газодинамический насадок для измерения температуры потока газа, включающий проточную камеру с входным и выходным патрубками и жиклерами в них, вводят в заданную точку потока. Осуществляют отбор пробы газа через жиклер входного патрубка и пропускают пробу газа через насадок. При этом одновременно измеряют давление газа в потоке перед входным патрубком и внутри камеры перед жиклером выходного патрубка, а по полученным данным определяют температуру газа по заданному соотношению.

Согласно изобретению задают площади жиклеров и определяют их характеристики с выполнением калибровок по расходу, учитывающих поправки на тепловое расширение диаметров сопел жиклеров и на зависимость коэффициентов расхода (µ) жиклеров от числа Рейнольдса, в виде соотношения ,

где µ1 - коэффициент расхода жиклера входного патрубка;

µ2 - коэффициент расхода жиклера выходного патрубка;

F1 - площадь проходного сечения жиклера входного патрубка;

F2 - площадь проходного сечения жиклера выходного патрубка.

Далее, понижая давление в выходном патрубке, устанавливают на жиклерах сверхкритические перепады давлений. При этом измеряют дополнительно температуру газа внутри камеры перед жиклером выходного патрубка и давление газа после этого жиклера.

По полученным данным определяют температуру газа в точке отбора пробы (перед жиклером входного патрубка) по соотношению:

,

где - температура газа перед жиклером выходного патрубка;

; ;

m1, m2 - коэффициенты, учитывающие изменения показателя адиабаты газа k и газовой постоянной R для входного и выходного жиклеров насадка;

R1, R2 - газовые постоянные;

- полное давление газа на входе в насадок;

- полное давление газа на входе перед жиклером выходного патрубка;

k1 - показатель адиабаты газа на входе в насадок;

k2 - показатель адиабаты газа на входе перед жиклером выходного патрубка.

При таком способе определения температуры потока нагретого газа:

- выбор площадей жиклеров и определение их расходных характеристик с учетом найденных по результатам предварительных калибровок поправок на тепловое расширение диаметров сопел жиклеров и на зависимость коэффициентов расхода (µ) жиклеров от числа Рейнольдса, в виде соотношения обеспечивает получение сверхкритического перепада давлений на них в реальных испытаниях при создании разрежения за вторым жиклером;

- понижение давления в выходном патрубке с установлением на обоих жиклерах насадка сверхкритических перепадов давления обеспечивает достижение в их сечениях скорости, равной местной скорости звука, при которой относительная плотность тока достигает постоянного значения, равного 1,0, что позволяет исключить ее из исходного уравнения неразрывности течения для потока пробы газа и, таким образом, существенно упростить способ измерения, повысить точность и надежность определения температуры нагретого газа с помощью газодинамического насадка;

- при установлении на жиклерах сверхкритических перепадов давления, измерение дополнительно давления газа после второго жиклера обеспечивает контроль наличия сверхкритического перепада на нем, а измерение температуры газа внутри камеры перед жиклером выходного патрубка позволяет использовать ее значение для определения температуры потока нагретого газа в точке измерения;

- определение по полученным данным температуры газа в точке отбора пробы (перед жиклером входного патрубка) по соотношению:

,

позволяет оперативно в темпе испытания определять искомую температуру.

Таким образом, решены поставленные в изобретении задачи:

- разработан надежный способ определения локального значения температуры потока газа нагретого до значений 2700 К - характерных для камер сгорания современных и перспективных авиационных двигателей различного назначения;

- повышена точность и надежность локального определения высоких значений температуры потока нагретого газа;

- снижено время и стоимость газодинамических натурных и модельных испытаний камер сгорания за счет сокращения времени выполнения локальных измерений температур газового потока.

Настоящее изобретение поясняется последующим подробным описанием газодинамического насадка, представленным схематично на чертеже и способа определения температуры потока нагретого газа этим насадком.

Газодинамический насадок для определения температуры включает проточную камеру 1 с входным и выходным патрубками 2, 3 и соответственно жиклерами 4, 5 в них. Насадок снабжен датчиком 6 давления газа, установленным в потоке перед входным патрубком 2, датчиком 7 давления газа и датчиком 8 температуры газа, установленными внутри камеры 1 перед жиклером 5, датчиком 9 давления газа, установленным в выходном патрубке 3 после жиклера 5.

Способ измерения температуры потока нагретого газа заключается в том, что задают площади жиклеров 4, 5 и определяют их характеристики с выполнением калибровок по расходу, учитывающих поправки на тепловое расширение диаметров сопел жиклеров и на зависимость коэффициентов расхода (µ) жиклеров от числа Рейнольдса, в виде соотношения ,

где µ1 - коэффициент расхода жиклера входного патрубка;

µ2 - коэффициент расхода жиклера выходного патрубка;

F1 - площадь проходного сечения жиклера входного патрубка;

F2 - площадь проходного сечения жиклера выходного патрубка.

Вводят газодинамический насадок в заданную точку потока газа. Осуществляют отбор пробы газа входным патрубком 2 через жиклер 4 и пропускают пробу через насадок. При этом одновременно измеряют давление газа в потоке датчиком 6 перед входным патрубком 2, давление газа датчиком 7 и температуру газа датчиком 8 внутри камеры 1 перед жиклером 5 выходного патрубка 3 и давление газа датчиком 9, установленным в выходном патрубке 3 после жиклера 5.

Далее, понижая давление в выходном патрубке 3, устанавливают на жиклерах 4, 5 насадка сверхкритические перепады давления. При этом измеряют давление датчиком 7 и температуру газа датчиком 8 внутри камеры 1 до жиклера 5 выходного патрубка и давление газа датчиком 9 после жиклера 5.

По полученным данным определяют температуру газа в точке отбора пробы (перед жиклером входного патрубка) по соотношению:

,

где - температура газа перед жиклером выходного патрубка;

; ;

m1, m2 - коэффициенты, учитывающие изменения показателя адиабаты газа k и газовой постоянной R для входного и выходного жиклеров насадка;

R1, R2 - газовые постоянные;

- полное давление газа на входе в насадок;

- полное давление газа на входе перед жиклером выходного патрубка:

k1 - показатель адиабаты газа на входе в насадок;

k2 - показатель адиабаты газа на входе перед жиклером выходного патрубка.

Способ определения температуры нагретого до 2700 К газа прошел экспериментальную проверку в различных условиях работы и показал хорошие характеристики по точности и скорости выполнения измерений, которые удовлетворяют требованиям методик выполнения измерений при испытаниях камер сгорания авиадвигателей различного назначения.

Технический результат от использования заявленного технического решения заключается в повышении точности, надежности и скорости выполнения локального определения высокой температуры потока нагретого газа, что позволяет существенно сократить прямые затраты на проведение испытаний и повысить их информативность.

Способ определения температуры потока нагретого газа, заключающийся в том, что газодинамический насадок для определения температуры потока газа, включающий проточную камеру с входным и выходным патрубками и жиклерами в них, вводят в заданную точку потока, осуществляют отбор пробы газа через жиклер входного патрубка и пропускают пробу через насадок, при этом одновременно измеряют давление газа в потоке перед входным патрубком и внутри камеры перед жиклером выходного патрубка, а по полученным данным определяют температуру газа по заданному соотношению, отличающийся тем, что задают площади жиклеров и определяют их характеристики с выполнением калибровок по расходу, учитывающих поправки на тепловое расширение диаметров сопел жиклеров и на зависимость коэффициентов расхода (µ) жиклеров от числа Рейнольдса, в виде соотношения ,где µ - коэффициент расхода жиклера входного патрубка;µ - коэффициент расхода жиклера выходного патрубка;F - площадь проходного сечения жиклера входного патрубка;F - площадь проходного сечения жиклера выходного патрубка,далее, понижая давление в выходном патрубке, устанавливают на жиклерах сверхкритические перепады давлений, при этом измеряют дополнительно температуру газа внутри камеры перед жиклером выходного патрубка и давление газа после этого жиклера, по полученным данным определяют температуру газа в точке отбора пробы по соотношению: ,где - температура газа перед жиклером выходного патрубка; ; ;m, m- коэффициенты, учитывающие изменения показателя адиабаты газа k и газовой постоянной R для входного и выходного жиклеров насадка;R, R - газовые постоянные; - полное давление газа на входе в насадок; - полное давление газа на входе перед жиклером выходного патрубка:k - показатель адиабаты газа на входе в насадок;k - показатель адиабаты газа на входе перед жиклером выходного патрубка.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОТОКА НАГРЕТОГО ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОТОКА НАГРЕТОГО ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОТОКА НАГРЕТОГО ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОТОКА НАГРЕТОГО ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОТОКА НАГРЕТОГО ГАЗА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 204.
10.04.2015
№216.013.3df9

Система подачи жидкого кислорода и способ его подачи из бака потребителю

Изобретение относится к области силовых установок летательных аппаратов. Система подачи жидкого кислорода, содержащая агрегат соединенных последовательно гидравлически друг с другом насосов трех каскадов с автономными приводами, бак с кислородом и потребитель кислорода, где вход системы...
Тип: Изобретение
Номер охранного документа: 0002547353
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41f0

Способ определения адгезионной прочности теплозащитного покрытия на сдвиг и устройство для его осуществления

Изобретение относится к способу и устройству для определения адгезионной прочности теплозащитных покрытий для образцов. Для определения адгезионной прочности теплозащитного покрытия на сдвиг на подложку, выполненную в виде наружных поверхностей двух соосно установленных с поджатием по стыку...
Тип: Изобретение
Номер охранного документа: 0002548378
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.441b

Способ спектрометрического измерения средней температуры слоя газа заданной толщины

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины,...
Тип: Изобретение
Номер охранного документа: 0002548933
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4db8

Муфта газогенератора

Изобретение относится к области газотурбинных силовых установок легких и беспилотных летательных аппаратов, а именно к конструкции газогенераторов газотурбинных двигателей. Муфта газогенератора содержит средства для передачи крутящего момента и осевого сцепления между валами в виде...
Тип: Изобретение
Номер охранного документа: 0002551410
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.59db

Цифровая электронная система управления с встроенной полной термогазодинамической математической моделью газотурбинного двигателя и авиационный газотурбинный двигатель

Группа изобретений относится к области авиационных газотурбинных двигателей (ГТД). Технический результат заключается в повышении качества и надежности управления ГТД в реальной эксплуатации за счет встроенного в систему управления ГТД программного обеспечения «виртуальный двигатель»,...
Тип: Изобретение
Номер охранного документа: 0002554544
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6d68

Способ измерения параметров пульсирующего потока

Изобретение относится к авиационной технике, а именно к способам определения динамики изменения газодинамических параметров потока в лопаточных машинах и каналах, например в лопаточных компрессорах, трубопроводах и диффузорах в заданных областях течения, как в пограничных зонах, так и в ядре...
Тип: Изобретение
Номер охранного документа: 0002559566
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.7834

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя включает отбор охлаждающего воздуха из воздушной полости камеры сгорания, его транспортировку в аппарат закрутки, выполненный на статоре напротив диска турбины и последующий подвод охлаждающего воздуха из аппарата закрутки во...
Тип: Изобретение
Номер охранного документа: 0002562361
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afa

Малоразмерный газотурбинный двигатель с регенерацией тепла

Малоразмерный газотурбинный двигатель с регенерацией тепла содержит компрессор с входным устройством, газовоздушный рекуперативный теплообменник, камеру сгорания, турбину привода компрессора и свободную турбину привода потребителя эффективной мощности, расположенные в едином корпусе с...
Тип: Изобретение
Номер охранного документа: 0002563079
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7b07

Способ организации детонационно-дефлаграционного горения и детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель

Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования...
Тип: Изобретение
Номер охранного документа: 0002563092
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
Показаны записи 31-40 из 79.
10.04.2015
№216.013.3df9

Система подачи жидкого кислорода и способ его подачи из бака потребителю

Изобретение относится к области силовых установок летательных аппаратов. Система подачи жидкого кислорода, содержащая агрегат соединенных последовательно гидравлически друг с другом насосов трех каскадов с автономными приводами, бак с кислородом и потребитель кислорода, где вход системы...
Тип: Изобретение
Номер охранного документа: 0002547353
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41f0

Способ определения адгезионной прочности теплозащитного покрытия на сдвиг и устройство для его осуществления

Изобретение относится к способу и устройству для определения адгезионной прочности теплозащитных покрытий для образцов. Для определения адгезионной прочности теплозащитного покрытия на сдвиг на подложку, выполненную в виде наружных поверхностей двух соосно установленных с поджатием по стыку...
Тип: Изобретение
Номер охранного документа: 0002548378
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.441b

Способ спектрометрического измерения средней температуры слоя газа заданной толщины

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины,...
Тип: Изобретение
Номер охранного документа: 0002548933
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4db8

Муфта газогенератора

Изобретение относится к области газотурбинных силовых установок легких и беспилотных летательных аппаратов, а именно к конструкции газогенераторов газотурбинных двигателей. Муфта газогенератора содержит средства для передачи крутящего момента и осевого сцепления между валами в виде...
Тип: Изобретение
Номер охранного документа: 0002551410
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.59db

Цифровая электронная система управления с встроенной полной термогазодинамической математической моделью газотурбинного двигателя и авиационный газотурбинный двигатель

Группа изобретений относится к области авиационных газотурбинных двигателей (ГТД). Технический результат заключается в повышении качества и надежности управления ГТД в реальной эксплуатации за счет встроенного в систему управления ГТД программного обеспечения «виртуальный двигатель»,...
Тип: Изобретение
Номер охранного документа: 0002554544
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6d68

Способ измерения параметров пульсирующего потока

Изобретение относится к авиационной технике, а именно к способам определения динамики изменения газодинамических параметров потока в лопаточных машинах и каналах, например в лопаточных компрессорах, трубопроводах и диффузорах в заданных областях течения, как в пограничных зонах, так и в ядре...
Тип: Изобретение
Номер охранного документа: 0002559566
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.7834

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя включает отбор охлаждающего воздуха из воздушной полости камеры сгорания, его транспортировку в аппарат закрутки, выполненный на статоре напротив диска турбины и последующий подвод охлаждающего воздуха из аппарата закрутки во...
Тип: Изобретение
Номер охранного документа: 0002562361
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afa

Малоразмерный газотурбинный двигатель с регенерацией тепла

Малоразмерный газотурбинный двигатель с регенерацией тепла содержит компрессор с входным устройством, газовоздушный рекуперативный теплообменник, камеру сгорания, турбину привода компрессора и свободную турбину привода потребителя эффективной мощности, расположенные в едином корпусе с...
Тип: Изобретение
Номер охранного документа: 0002563079
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7b07

Способ организации детонационно-дефлаграционного горения и детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель

Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования...
Тип: Изобретение
Номер охранного документа: 0002563092
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
+ добавить свой РИД