×
20.04.2015
216.013.441b

Результат интеллектуальной деятельности: СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины, содержащего поглотитель, измеряют спектр излучения от слоя газа заданной толщины. Парциальное давление поглотителя измеряют по меньшей мере в двух сечениях слоя газа заданной толщины в направлении линии измерения спектра излучения. По усредненному значению парциального давления судят о распределении поглотителя в слое газа заданной толщины. Вычисляют зависимость волнового числа поглотителя W в слое газа заданной толщины от температуры газа W=f(T). Среднюю температуру слоя газа заданной толщины определяют по точке пересечения линии, отображающей зависимость волнового числа поглотителя в слое газа заданной толщины от температуры газа в системе координат mV и Т, с линией, полученной по результатам измерения спектра излучения от слоя газа заданной толщины в системе координат mV и Т. Технический результат - повышение точности определения средней температуры слоя газа заданной толщины. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области дистанционного измерения высоких температур газов, в частности к способам измерения средней температуры слоя газа с поглотителем и может быть применено для экспериментальных исследований рабочего процесса силовых установок.

Известен способ спектрометрического измерения средней температуры текучей среды, содержащей поглотитель, при котором проводят калибровку измерительной системы, измеряют спектр излучения от измеряемой среды, регистрируют величину плотности среды и по результатам измерений вычисляют значение средней температуры этой среды (авторское свидетельство СССР №1515070, G01K 11/00, 1987 г.). Указанный способ позволяет с достаточной точностью определять среднюю температуру измеряемой текучей среды. Однако в силу специфических особенностей его осуществления - измерение параметров текучей среды осуществляется в кюветах, этот способ не может быть применен для исследования послойного распределения температур в объеме газа с поглотителем.

Наиболее близким к предлагаемому по технической сущности является способ спектрометрического измерения средней температуры слоя газа заданной толщины, содержащего поглотитель, заключающийся в том, что калибруют оптическую систему измерения излучаемой энергии с помощью регулируемого нагревателя, определяя зависимость величины электрического сигнала mV системы измерения от температуры газа Т в нагревателе для разных значений волнового числа поглотителя, измеряют парциальное давление поглотителя в измеряемом объеме газа и определяют содержание поглотителя в объеме газа, фокусируют поток излучения от измеряемого объема газа на приемное устройство измерителя, прерывают фокусируемый поток излучения с заданной частотой, измеряют спектр излучения объема газа и по результатам измерений судят о средней температуре объема газа (патент США №6422745, НКИ 374-131, 2002 г.).

Известный способ реализуется с помощью оптической системы измерений, имеющей множество инфракрасных детекторов с оптическими фильтрами для узких диапазонов инфракрасного излучения, расположенных по длине газового тракта. Калибровка системы измерений проводится при разных температурах нагревателя (абсолютно черного тела) для каждого чувствительного элемента системы измерений путем установления зависимости электрического сигнала от значения оптического излучения газа. Известный способ позволяет определить значение средней температуры газа с поглотителем для любого заданного поперечного сечения объема газа по его длине, т.е. позволяет контролировать изменение средней температуры газа только по длине потока газа.

Недостатком известного способа является то, что при измерении не учитывается неравномерность распределения поглотителя в поперечном сечении объема газа, поэтому известным способом измерения невозможно определить среднюю температуру слоя газа заданной толщины и контролировать изменение средней температуры объема газа в поперечном сечении объема газа.

Задачей изобретения является расширение функциональных возможностей способа спектрометрического измерения средней температуры объема газа за счет определения средней температуры слоя газа заданной толщины, что позволяет судить о распределении значений средней температуры газа в поперечном сечении объема газа с поглотителем.

Указанная задача решается тем, что измеряют спектр излучения от слоя газа заданной толщины, парциальное давление поглотителя измеряют, по меньшей мере, в двух сечениях слоя газа заданной толщины в направлении линии измерения спектра излучения и по усредненному значению парциального давления судят о распределении поглотителя в слое газа заданной толщины, вычисляют зависимость волнового числа поглотителя в слое газа заданной толщины W от температуры газа W=f(T), а среднюю температуру слоя газа заданной толщины определяют по точке пересечения линии, отображающей зависимость волнового числа поглотителя в слое газа заданной толщины от температуры газа в системе координат mV и Т, с линией, полученной по результатам измерения спектра излучения от слоя газа заданной толщины в системе координат mV и Т.

Причем зависимость волнового числа поглотителя в слое газа заданной толщины от температуры нагрева газа W=f(T) вычисляют с параметрами, для которых значения средней длины пробега излучения в слое газа и коэффициента поглощения газа определяются в зависимости от заданной толщины слоя газа.

Существенность отличительных признаков способа спектрометрического измерения средней температуры слоя газа подтверждается тем, что только совокупность всех действий и операций, описывающая изобретение позволяет решить задачу расширения функциональных возможностей оптической системы измерения средней температуры газа.

Пример реализации способа измерения средней температуры слоя газа заданной толщины поясняется чертежами, где на фиг.1 представлена схема измерения парциального давления поглотителя и спектров излучения в поперечном сечении слоев газа заданной толщины для определения их средней температуры, на фиг.2 - схема калибровки оптической системы измерения излучаемой энергии с помощью регулируемого нагревателя, на фиг.3 - зависимость значений коэффициента поглощения К от волнового числа поглотителя W при разных температурах газа Тгаза, на фиг.4 - зависимость значений волнового числа поглотителя от температуры газа W=f (Тгаза), на фиг.5 - диаграмма определения значения средней температуры слоя газа заданной толщины, на фиг.6 - зависимость величины электрического сигнала спектрометра от волнового числа при разных температурах газа, определенная при калибровке оптической системы измерения.

Способ спектрометрического измерения средней температуры слоя газа заданной толщины, содержащего поглотитель, реализуется следующим образом: калибруют оптическую систему измерения излучаемой энергии с помощью регулируемого нагревателя, определяя зависимость величины электрического сигнала mV системы измерения от температуры газа T в нагревателе для разных значений волнового числа поглотителя, измеряют парциальное давление поглотителя в измеряемом объеме газа и определяют содержание поглотителя в объеме газа, фокусируют поток излучения от измеряемого объема газа на приемное устройство измерителя, прерывают фокусируемый поток излучения с заданной частотой, измеряют спектр излучения объема газа и по результатам измерений судят о средней температуре объема газа, причем измеряют спектр излучения от слоя газа заданной толщины, парциальное давление поглотителя измеряют, по меньшей мере, в двух сечениях слоя газа заданной толщины в направлении линии измерения спектра излучения и по усредненному значению парциального давления судят о распределении поглотителя в слое газа заданной толщины, вычисляют зависимость волнового числа поглотителя W в слое газа заданной толщины от температуры газа W=f(T), а среднюю температуру слоя газа заданной толщины определяют по точке пересечения линии, отображающей зависимость волнового числа поглотителя в слое газа заданной толщины от температуры газа в системе координат mV и Т, с линией, полученной по результатам измерения спектра излучения от слоя газа заданной толщины в системе координат mV и Т.

На фиг.1 показано поперечное сечение камеры 1, во внутренней полости которой находится исследуемый объем газа с поглотителем, например поток продуктов горения с углекислым газом CO2. Система измерения спектра излучения объема газа с поглотителем содержит спектрометр 2, в котором поток излучения от измеряемого объема газа фокусируют на приемное устройство измерителя, прерывают (модулируют) фокусируемый поток излучения с заданной частотой и измеряют спектр излучения объема газа. Электрический сигнал от измерителя поступает в усилитель 3, фильтр 4, цифровой преобразователь 5 и далее в компьютер (не показан) для обработки.

Калибровка оптической системы измерения может проводиться как в самой исследуемой камере 1 с помощью регулируемого нагревателя, так и в специальной камере регулируемого нагревателя 7, показанной на фиг.2, в диапазоне температур, близких к рабочей температуре камеры 1. Источником излучения в обоих случаях является абсолютно черное тело, что дает возможность определить зависимость величины электрического сигнала mV системы измерения от температуры газа Т в нагревателе 7 для разных значений волнового числа поглотителя.

Калибровка системы измерений проводится для заданного значения толщины газового слоя, которое определяется в камере нагревателя 7 расстоянием от начального сечения F камеры, т.е. расстояние от плоскости поперечного сечения G до начального сечения F соответствует заданной толщине слоя газа, равной 40 мм, а расстояние от плоскости поперечного сечения Н до начального сечения F соответствует заданной толщине слоя газа, равной 200 мм.

В основу описываемого способа заложено условие, при котором значения средней длины пробега излучения и коэффициента поглощения газа определяются в зависимости от заданной толщины измеряемого слоя газа. Известны оптические свойства углекислого газа, показанные на фиг.3 и представляющие собой зависимости коэффициентов поглощения К от волнового числа W при разных температурах газа Т. (C.B. Ludwig, W. Malkmus, J.E. Reardon, J.A.L. Thomson «Handbook of Infrared radiation from Combustion Gases» Washington, NASA, 8p-3080, 1973. - 486 p.).

Из известных зависимостей при постоянном коэффициенте поглощения К можно получить зависимость значения волнового числа поглотителя от температуры газа W=f(T) и описывающее полученную зависимость уравнение. С учетом парциального давления поглотителя Р коэффициент поглощения газа К является величиной, обратной средней длине пробега излучения Lcp в слое газа: К=1/Р 1/Lcp, при этом средняя длина пробега излучения Lcp с учетом парциального давления поглотителя P равна половине заданной толщины слоя газа (AB или AC).

Исходя из условия, что все значения измеренной оптическим методом средней температуры газа с учетом величины парциального давления поглотителя и определенного значения коэффициента поглощения газа К должны удовлетворять зависимости W=f (Тгаза), вычисляем эту функцию для слоя газа заданной толщины AB, для которого средняя длина пробега излучения Lcp1=2 см, а коэффициент поглощения газа Кгаз1=0,5 (1/см) при парциальном давлении 0,05. На фиг.4 функция W=f (Тгаза) для слоя заданной толщины AB, показанная линией W(T)1, является «линией разрешенных решений» при определенном значении коэффициента поглощения. Аналогично может быть определена «линия разрешенных решений» для слоя газа толщиной AC - линия W(T)2 на фиг.4.

В процессе калибровки оптической системы измерения определяются зависимости значения электрического сигнала спектрометра mV от значения волнового числа W в диапазоне спектральной чувствительности спектрометра для разных значений температуры в нагревателе. На фиг.6 показаны графики, записанные по результатам измерения спектров излучения в камере нагревателя 7 для разных значений температуры и совмещенные в координатах mV и W. При дальнейшей обработке эти зависимости преобразуются в зависимости электрического сигнала mV от температуры газа Tгаза для разных значений волнового числа W. Для этого на графике фиг.6 проводятся вертикальные прямые W=const, соответствующие конкретным значениям волнового числа, и по координатам точек пересечения (T1, Т2, Т3, Т4) вертикальных прямых W=const с графиками для разных значений температур строятся линии W=const на диаграмме с координатами mV и Тгаза, показанной на фиг.5.

На диаграмме показаны 11 линий W=const для разных значений волнового числа W, а также «линия разрешенных решений» W(T)1 (штриховая), построенная по значениям волнового числа W и температуры Tгаза и отображающая в системе координат mV и Тгаза зависимость волнового числа поглотителя в слое газа заданной толщины от температуры газа.

Для каждого значения толщины слоя газа в камере 1 строится отдельная калибровочная диаграмма.

В процессе определения средней температуры слоя газа заданной толщины в камере 1 измеряют спектр излучения от слоя газа заданной толщины, определенной отрезком AB, измеряют парциальное давление поглотителя Р в двух сечениях D и E слоя газа заданной толщины и по усредненному значению парциального давления поглотителя Р судят о распределении поглотителя в слое газа заданной толщины. Результаты оптического измерения спектра в слое газа заданной толщины отображают в виде линии 12 на диаграмме фиг.5 по полученным значениям электрического сигнала mV и волнового числа W.

По точке пересечения линии 12 с «линией разрешенных решений» W(T)1 определяется средняя температура слоя газа заданной толщины. При изменении параметров работы в исследуемой камере 1 по значениям электрического сигнала mV и волнового числа W аналогичным образом строится линия 13 и по точке пересечения ее с «линией разрешенных решений» W(T)1 определяется средняя температура слоя газа заданной толщины.

Данный способ измерения может применяться в энергетике и промышленной теплотехнике для исследования высокотемпературных процессов и позволяет расширить функциональные возможности спектрометрических измерений температуры в объеме газа.


СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ СРЕДНЕЙ ТЕМПЕРАТУРЫ СЛОЯ ГАЗА ЗАДАННОЙ ТОЛЩИНЫ
Источник поступления информации: Роспатент

Показаны записи 171-180 из 206.
19.06.2019
№219.017.8ab1

Роторный узел для газотурбинного двигателя

Роторный узел для газотурбинного двигателя содержит пару металлических дисков с центральным отверстием под вал ротора и множеством прецизионно обработанных сквозных отверстий под штифт, равномерно распределенных по длине двух концентрических окружностей, и лопаточный узел, размещенный между...
Тип: Изобретение
Номер охранного документа: 0002439337
Дата охранного документа: 10.01.2012
19.06.2019
№219.017.8ad1

Вспомогательная силовая установка для самолета

Изобретение относится к области авиации, более конкретно к вспомогательной силовой установке для самолета. Вспомогательная силовая установка для самолета содержит реактор-конвертор, батарею топливных элементов, блоки хранения и подачи топлива, соединенные с реактором-конвертором, дожигатель,...
Тип: Изобретение
Номер охранного документа: 0002434790
Дата охранного документа: 27.11.2011
19.06.2019
№219.017.8b27

Привод регулирующего клапана

Изобретение относится к области регулирования подачи различных газообразных и жидких сред в трубопроводных системах, а именно к подаче топлива в топливонасосных помещениях испытательных стендов авиадвигателей и их узлов. Привод регулирующего клапана, который размещен на корпусе клапана,...
Тип: Изобретение
Номер охранного документа: 0002443929
Дата охранного документа: 27.02.2012
19.06.2019
№219.017.8b56

Импульсный детонационный ракетный двигатель

Импульсный детонационный ракетный двигатель содержит камеру сгорания, вход которой служит для порционного ввода детонационного топлива, систему импульсного зажигания и устройство запирания выхода камеры сгорания в момент заполнения ее порцией детонационного топлива и тяговое осесимметричное...
Тип: Изобретение
Номер охранного документа: 0002442008
Дата охранного документа: 10.02.2012
19.06.2019
№219.017.8b83

Способ изготовления интегрального блиска с неохлаждаемыми рабочими лопатками для газотурбинного двигателя и интегральный блиск

При изготовлении интегрального блиска с неохлаждаемыми рабочими лопатками для газотурбинного двигателя отдельные лопатки, выполненные из одного металлического сплава, соединяют с дисковой частью, выполненной из другого металлического сплава. Отдельные лопатки соединяют с дисковой частью в...
Тип: Изобретение
Номер охранного документа: 0002467177
Дата охранного документа: 20.11.2012
22.06.2019
№219.017.8eb2

Способ управления турбореактивным двухконтурным двигателем

Изобретение относится к авиадвигателестроению, касается регулирования в полете турбореактивного двухконтурного двигателя со смешением потоков. Способ характеризуется тем, что на стационарных и переходных режимах работы двигателя измеряют внешние рабочие параметры, по которым вычисляют...
Тип: Изобретение
Номер охранного документа: 0002692189
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9bf5

Способ диагностики газотурбинных двигателей при попадании посторонних предметов на их вход

Изобретение относится к области измерительной техники, а именно для повышения эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. На входе двигателя регистрируют электрический сигнал, генерируемый...
Тип: Изобретение
Номер охранного документа: 0002348911
Дата охранного документа: 10.03.2009
29.06.2019
№219.017.9fcd

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит цилиндрический корпус с коническим диффузором на входе, установленное на стенке камеры устройство зажигания топливовоздушной смеси и пристыкованную соосно к диффузору на входе горелку. Горелка включает системы подачи жидкого и газообразного топлив,...
Тип: Изобретение
Номер охранного документа: 0002456510
Дата охранного документа: 20.07.2012
02.07.2019
№219.017.a2ef

Дроссель

Изобретение относится к области арматуростроения и может быть использовано для регулирования расходов высокотемпературных газов на стендах при проведении испытаний авиадвигателей и их узлов. Дроссель содержит разъемный корпус, состоящий из передней и задней частей, неподвижный диск, размещенный...
Тип: Изобретение
Номер охранного документа: 0002692939
Дата охранного документа: 28.06.2019
10.07.2019
№219.017.ac5e

Способ оценки режимов трения в сопряжениях цилиндропоршневой и кривошипно-шатунной групп поршневого двигателя и устройство для его осуществления

Изобретение относится к машиностроению, в частности к способам испытаний двигателей внутреннего сгорания (ДВС), и может быть использовано при совершенствовании условий смазки и оптимизации конструктивных параметров деталей цилиндропоршневой и кривошипно-шатунной групп поршневого ДВС, и...
Тип: Изобретение
Номер охранного документа: 0002391642
Дата охранного документа: 10.06.2010
Показаны записи 81-82 из 82.
29.12.2018
№218.016.aca4

Устройство для определения температуры газовой среды в газотурбинных двигателях

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований...
Тип: Изобретение
Номер охранного документа: 0002676237
Дата охранного документа: 26.12.2018
01.07.2020
№220.018.2d46

Устройство для измерения температуры в газовом потоке

Изобретение относится к области измерительной техники и касается устройства для измерения температуры в газовом потоке. Устройство содержит оптическую систему, состоящую из спектрометра с входным зеркалом и детектором, оптического коллиматора с отражающей поверхностью, расположенной вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002725026
Дата охранного документа: 29.06.2020
+ добавить свой РИД