×
20.04.2015
216.013.43da

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ МАГНИТНОГО КЛИНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин. Осуществляют смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании. Ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%. Обеспечивается получение материала для изготовления магнитного клина, позволяющего уменьшить добавочные потери двигателя и обладающего требуемой магнитной проницаемостью. 2 ил., 2 пр.
Основные результаты: Способ получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин, включающий смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.

Изобретение относится к области электромашиностроения и может быть использовано для изготовления материала для получения магнитного клина электрических машин.

Известен состав и способ получения магнитодиэлектрического материала (авт. св-во №57966, опубликованное 30.04.80 г., бюлл.№16), состоящего из ферромагнитного наполнителя в виде магнетита, фурановоэпоксидной смолы, отвердителя и стеклонити. Компоненты тщательно перемешивают, магнитодиэлектрическую массу вакуумируют и используют для формования магнитных клиньев с последующим отверждением. Для упрочнения в магнитодиэлектрическую массу добавляют стекловолокно. После отверждения магнитные клинья должны пройти термообработку при температуре 100-120°C.

Компоненты магнитодиэлектрической массы тщательно перемешивают, тем самым равномерно по объему распределяется ферромагнитный материал.

При равномерном распределении ферромагнитного компонента по объему магнитного клина снижается эффективность его работы в электрических машинах, так как на характеристики магнитного поля в воздушном зазоре между статором и ротором существенное влияние оказывает число слоев с различной магнитной проницаемостью (ферромагнитный и диэлектрические слои) в материале магнитного клина, а также геометрические размеры этих участков. Послойная структура материала магнитного клина ограничивает магнитные потоки пазового рассеяния, замыкающегося через клин, что, в конечном счете, влияет на кратность пускового и максимального моментов электрической машины, уменьшение добавочных потерь до 30%, повышение КПД на 0,4-0,6%.

Введение стеклонитей не является лучшим вариантом для повышения механических характеристик магнитодиэлектрического материала магнитных клиньев.

Перемешивание эпоксидной смолы с ферромагнетиком, отвердителем и стеклонитью, как правило, не позволяет добиться равномерного распределения стеклонити по объему материала. Отдельные стеклонити замыкаются друг на друге и в местах, где происходит контактирование стеклонитей, образуются участки, незаполненные связующим. Возникают структурные дефекты, которые являются концентраторами напряжений и приводят к ухудшению механических характеристик материала.

Недостатком также является применение связующего в виде смолы, которая при полимеризации подвергается вакуумированию и термообработке при 100-120°C.

Сегодня известны эпоксидные смолы типа ЭА-5, ЭА-10, которые не требуют выполнения указанных технологических операций для получения магнитодиэлектрического материала.

Наиболее близким к предлагаемому является способ приготовления материала для изготовления магнитных клиньев (авт. св-во №493810, опубликованное 30.11.75 г., бюлл. №44), который и выбран в качестве прототипа.

Ферромагнитный материал смешивают со связующим и перед заливкой массы в пресс-форму в последнюю вводят магнитомягкую проволоку в виде ориентированной сетки с немагнитопроводящим утком, после заливки массы осуществляют прессование плит, совмещенное с вибрацией, обеспечивающей выделение из магнитодиэлектрической массы изоляционной пленки, обволакивающей сетку, при этом производят магнитное ориентирование частиц железа в заданном направлении.

Указанный способ имеет следующие недостатки.

Для упрочнения магнитодиэлектрического материала в виде листов или плит перед заливкой массы в пресс-форму вводят магнитомягкую проволоку в виде ориентированной сетки с немагнитопроводящим утком. Магнитомягкую проволоку используют в качестве армирующего элемента для повышения механической прочности материала магнитных клиньев. Решая задачу повышения прочностных характеристик, магнитомягкая металлическая сетка блокирует внешнее магнитное поле, которое используется только для ориентации зерен ферромагнетика в пространстве. Снижается эффективность действия магнитного поля на ориентацию частиц ферромагнетика в вязкой среде отверждаемой магнитодиэлектрической массы.

Дополнительно магнитодиэлектрический материал армируется стекловолокном. Отдельные стеклонити замыкаются уже не только друг на друга, образуя дефекты, которые являются концентраторами напряжений, но они также замыкаются на металлическую сетку. Повышается вероятность образования участков, плохо пропитанных органическим связующим, что обязательно будет снижать прочностные характеристики материала.

Использование магнитомягкой проволоки в виде сетки с немагнитным утком требует удаления немагнитного утка за счет виброобработки магнитодиэлектрической массы в пресс-форме. Авторы вынужденно вводят дополнительную операцию, без которой нельзя рассчитывать на межфазное взаимодействие между проволокой и связующим. Однако из-за высокой адгезионной способности связующего полное удаление изолирующего утка будет весьма затруднительным.

Задачей изобретения является создание материала магнитного клина, позволяющего уменьшить добавочные потери двигателя за счет ограничения потока пазового рассеяния.

Указанная задача решается тем, что способ изготовления материала для получения магнитного клина в виде листов и плит включает смешение ферромагнитного компонента с эпоксидной смолой, отверждение и заливку получаемой массы в пресс-форму, где помещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.

При введении частиц большего размера за счет снижения подвижности в вязкой среде эпоксидного связующего нельзя рассчитывать на формирование слоистой структуры без пересечения отдельных участков ферромагнитных слоев и снижения эффективности воздействия магнитного клина на электромагнитный поток пазового рассеяния и уменьшение добавочных потерь двигателя. К такому же результату приводит использование наночастиц магнетика и магнитной обработки напряженностью 300 эрстед.

Введение наночастиц магнетита обеспечивает высокую подвижность частиц в вязкой среде эпоксидного связующего при прессовании магнитодиэлектрической массы с армирующим элементом в виде стекловолокнистой ткани, что позволяет формировать слоистую структуру материала магнитного клина с четким разделением межфазной границы получения плотной структуры в пределах слоя ферромагнетика. В этом случае ферромагнитный слой работает в условиях воздействия магнитного поля как единая частица, что обеспечивает требуемую магнитную проницаемость материала.

Кроме того, ферромагнитный наполнитель с размером частиц до 100 нм не снижает прочностных характеристик отвержденной эпоксидной смолы.

Степень полимеризации эпоксидной смолы предварительно определяется, и магнитная обработка производится при степени отверждения не более 30% от полного.

Пример 1

Смесь ферромагнетика в виде магнетита с размером частиц от 10 до 100 нм, эпоксидной смолы марки К-153, отвердителя, взятых в соотношении: 25 масс.% магнетита, остальное - эпоксидная смола и 10 масс.% отвердителя, тщательно перемешивают и заливают в пресс-форму, в которую предварительно помещают армирующую сетку в виде стекловолокнистой ткани, далее накладывают магнитное поле напряженностью 800 эрстед. Предварительно определяют степень полимеризации магнитодиэлектрической массы и магнитную обработку начинают при степени полимеризации не более 30%.

Металлографический анализ отвержденного материала показывает, что ферромагнитный компонент образует замыкающиеся слои с неравномерным распределением по объему материала. На рис.1 показано распределение ферромагнитного компонента в отвержденной эпоксидной смоле после обработки магнитным полем напряженностью 300 эрстед: 1 - отвержденная эпоксидная смола, 2 - ферромагнитный компонент.

Применение магнитных клиньев, изготовленных из материала подобной структуры, показало, что асинхронный двигатель марки ДМ, по результатам испытаний согласно ГОСТ 25941-83, имел снижение добавочных потерь на 10%.

Пример 2

Смесь ферромагнетика в виде магнетита с размером частиц до 100 нм, эпоксидной смолы марки ЭП-10, отвердителя, взятых в соотношении: 25 вес.% магнетита, остальное - эпоксидная смола и 1-2% отвердителя, тщательно перемешивают и заливают в пресс-форму, в которую предварительно помещают армирующую сетку в виде стекловолокнистой ткани, далее накладывают магнитное поле напряженностью 800 эрстед. Предварительно определяют степень отверждения магнитодиэлектрической массы и магнитную обработку начинают при степени полимеризации не более 30%. Металлографический анализ отвержденного материала показывает, что материал имеет слоистую чередующуюся структуру из слоев отвержденного полимера и ферромагнитного наполнителя. Слои ферромагнитного компонента не замыкаются друг на друге. Слой ферромагнитного компонента имеет высокоплотную структуру, что обеспечивает высокую магнитную проницаемость слоя. На рис.2 показано распределение ферромагнитного компонента в отвержденной эпоксидной смоле после обработки магнитным полем напряженностью 800 эрстед: 1 - отвержденная эпоксидная смола; 2 - ферромагнитный компонент.

Применение магнитных клиньев, изготовленных из материала, показало, что асинхронный двигатель марки ДМ, по результатам испытаний согласно ГОСТ 25941-83, имел снижение вредных потерь на 30%, что подтверждает технический результат предлагаемого изобретения.

Способ получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин, включающий смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ МАГНИТНОГО КЛИНА
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ МАГНИТНОГО КЛИНА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 114.
10.04.2015
№216.013.3b7c

Способ определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон

Использование: для определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон. Сущность изобретения заключается в том, что изготавливают из эпоксидной смолы таблетку-держатель с образцами анализируемых стекловолокон и проводят последующий анализ...
Тип: Изобретение
Номер охранного документа: 0002546716
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f42

Способ получения электроизоляционного покрытия на поверхности электромагнитопроводящего материала

Изобретение относится к электромашиностроению и касается получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода электрических машин, работающих в экстремальных условиях воздействия радиационных полей и высоких температур. Способ включает окисление поверхности...
Тип: Изобретение
Номер охранного документа: 0002547682
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.419b

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002548293
Дата охранного документа: 20.04.2015
10.06.2015
№216.013.524b

Способ получения пленок твердых растворов замещения pbsnse методом ионного обмена

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона. Однако достигнутое на сегодня содержание олова в составе гидрохимически синтезируемых пленок PbSnSe не обеспечивает в полной мере...
Тип: Изобретение
Номер охранного документа: 0002552588
Дата охранного документа: 10.06.2015
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7528

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия,...
Тип: Изобретение
Номер охранного документа: 0002561567
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fa

Контактный теплоутилизатор с каплеуловителем

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. Контактный теплоутилизатор с каплеуловителем содержит контактную насадку с оросителем, по высоте которой монтирован каплеуловитель,...
Тип: Изобретение
Номер охранного документа: 0002561791
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8b3f

Способ получения невзрывного разрушающего средства агломерационным обжигом

Изобретение относится к технологиям получения невзрывных разрушающих средств (НРС) на основе известняка, которые применяются для разработки природного камня и щадящего разрушения строительных конструкций и объектов, выводимых из эксплуатации. Невзрывное разрушающее средство получают...
Тип: Изобретение
Номер охранного документа: 0002567254
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe8

Способ получения имплантированного ионами цинка кварцевого стекла

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка...
Тип: Изобретение
Номер охранного документа: 0002568456
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ea

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции,...
Тип: Изобретение
Номер охранного документа: 0002569485
Дата охранного документа: 27.11.2015
Показаны записи 51-60 из 166.
10.02.2014
№216.012.9fcb

Инфракрасный световод с большим диаметром поля моды

Изобретение относится к инфракрасным световодам с большим диаметром поля моды. Световод включает сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. Сердцевина диаметром 98-112 мкм выполнена из кристаллов на основе бромида серебра, содержащего твердый раствор...
Тип: Изобретение
Номер охранного документа: 0002506615
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a345

Способ изготовления модифицированного электрода для электрохимического анализа (варианты)

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности...
Тип: Изобретение
Номер охранного документа: 0002507512
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.bb33

Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты)

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы...
Тип: Изобретение
Номер охранного документа: 0002513651
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c1b0

Термогравиметрическая установка

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему,...
Тип: Изобретение
Номер охранного документа: 0002515333
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb24

Способ определения плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Образец...
Тип: Изобретение
Номер охранного документа: 0002517770
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb27

Способ определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристалла нитрида алюминия

Изобретение относится к радиационной физике, а именно к способам определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристаллического нитрида алюминия с использованием метода оптически стимулированной люминесценции (ОСЛ) в непрерывном режиме...
Тип: Изобретение
Номер охранного документа: 0002517773
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccd4

Способ термической обработки рельсов

Изобретение относится к области черной металлургии, в частности к производству железнодорожных рельсов, преимущественно длинномерных рельсов. Перед охлаждением прокатанного рельса при температуре конца прокатки 850-870°С концы рельса зажимают в клещевых зажимах и растягивают в продольном...
Тип: Изобретение
Номер охранного документа: 0002518207
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdaf

Способ бестокового получения урана (v) в расплавленных хлоридах щелочных металлов

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, в частности оксидного. Способ бестокового получения урана (V) в расплавленных хлоридах щелочных металлов (NaCl-2CsCl, NaCl-KCl, LiCl-KCl), содержащих ионы урана (VI), сущность которого...
Тип: Изобретение
Номер охранного документа: 0002518426
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5eb

Аппликатор магнитный

Изобретение относится к медицине, а именно к магнитотерапии, и может быть использовано для лечения различных заболеваний воздействием магнитных полей, создаваемых постоянным магнитом, размещаемым снаружи тела. Аппликатор магнитный содержит гибкую пластину из магнитомягкого эластомера на основе...
Тип: Изобретение
Номер охранного документа: 0002520541
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df1f

Способ извлечения редкоземельных элементов из жидких сплавов с цинком

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, а именно к способу извлечения редкоземельных элементов из жидкого сплава с цинком. Предлагаемый способ включает погружение сплава в солевой расплав с последующим переводом редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002522905
Дата охранного документа: 20.07.2014
+ добавить свой РИД