×
20.04.2015
216.013.43da

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ МАГНИТНОГО КЛИНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин. Осуществляют смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании. Ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%. Обеспечивается получение материала для изготовления магнитного клина, позволяющего уменьшить добавочные потери двигателя и обладающего требуемой магнитной проницаемостью. 2 ил., 2 пр.
Основные результаты: Способ получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин, включающий смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.

Изобретение относится к области электромашиностроения и может быть использовано для изготовления материала для получения магнитного клина электрических машин.

Известен состав и способ получения магнитодиэлектрического материала (авт. св-во №57966, опубликованное 30.04.80 г., бюлл.№16), состоящего из ферромагнитного наполнителя в виде магнетита, фурановоэпоксидной смолы, отвердителя и стеклонити. Компоненты тщательно перемешивают, магнитодиэлектрическую массу вакуумируют и используют для формования магнитных клиньев с последующим отверждением. Для упрочнения в магнитодиэлектрическую массу добавляют стекловолокно. После отверждения магнитные клинья должны пройти термообработку при температуре 100-120°C.

Компоненты магнитодиэлектрической массы тщательно перемешивают, тем самым равномерно по объему распределяется ферромагнитный материал.

При равномерном распределении ферромагнитного компонента по объему магнитного клина снижается эффективность его работы в электрических машинах, так как на характеристики магнитного поля в воздушном зазоре между статором и ротором существенное влияние оказывает число слоев с различной магнитной проницаемостью (ферромагнитный и диэлектрические слои) в материале магнитного клина, а также геометрические размеры этих участков. Послойная структура материала магнитного клина ограничивает магнитные потоки пазового рассеяния, замыкающегося через клин, что, в конечном счете, влияет на кратность пускового и максимального моментов электрической машины, уменьшение добавочных потерь до 30%, повышение КПД на 0,4-0,6%.

Введение стеклонитей не является лучшим вариантом для повышения механических характеристик магнитодиэлектрического материала магнитных клиньев.

Перемешивание эпоксидной смолы с ферромагнетиком, отвердителем и стеклонитью, как правило, не позволяет добиться равномерного распределения стеклонити по объему материала. Отдельные стеклонити замыкаются друг на друге и в местах, где происходит контактирование стеклонитей, образуются участки, незаполненные связующим. Возникают структурные дефекты, которые являются концентраторами напряжений и приводят к ухудшению механических характеристик материала.

Недостатком также является применение связующего в виде смолы, которая при полимеризации подвергается вакуумированию и термообработке при 100-120°C.

Сегодня известны эпоксидные смолы типа ЭА-5, ЭА-10, которые не требуют выполнения указанных технологических операций для получения магнитодиэлектрического материала.

Наиболее близким к предлагаемому является способ приготовления материала для изготовления магнитных клиньев (авт. св-во №493810, опубликованное 30.11.75 г., бюлл. №44), который и выбран в качестве прототипа.

Ферромагнитный материал смешивают со связующим и перед заливкой массы в пресс-форму в последнюю вводят магнитомягкую проволоку в виде ориентированной сетки с немагнитопроводящим утком, после заливки массы осуществляют прессование плит, совмещенное с вибрацией, обеспечивающей выделение из магнитодиэлектрической массы изоляционной пленки, обволакивающей сетку, при этом производят магнитное ориентирование частиц железа в заданном направлении.

Указанный способ имеет следующие недостатки.

Для упрочнения магнитодиэлектрического материала в виде листов или плит перед заливкой массы в пресс-форму вводят магнитомягкую проволоку в виде ориентированной сетки с немагнитопроводящим утком. Магнитомягкую проволоку используют в качестве армирующего элемента для повышения механической прочности материала магнитных клиньев. Решая задачу повышения прочностных характеристик, магнитомягкая металлическая сетка блокирует внешнее магнитное поле, которое используется только для ориентации зерен ферромагнетика в пространстве. Снижается эффективность действия магнитного поля на ориентацию частиц ферромагнетика в вязкой среде отверждаемой магнитодиэлектрической массы.

Дополнительно магнитодиэлектрический материал армируется стекловолокном. Отдельные стеклонити замыкаются уже не только друг на друга, образуя дефекты, которые являются концентраторами напряжений, но они также замыкаются на металлическую сетку. Повышается вероятность образования участков, плохо пропитанных органическим связующим, что обязательно будет снижать прочностные характеристики материала.

Использование магнитомягкой проволоки в виде сетки с немагнитным утком требует удаления немагнитного утка за счет виброобработки магнитодиэлектрической массы в пресс-форме. Авторы вынужденно вводят дополнительную операцию, без которой нельзя рассчитывать на межфазное взаимодействие между проволокой и связующим. Однако из-за высокой адгезионной способности связующего полное удаление изолирующего утка будет весьма затруднительным.

Задачей изобретения является создание материала магнитного клина, позволяющего уменьшить добавочные потери двигателя за счет ограничения потока пазового рассеяния.

Указанная задача решается тем, что способ изготовления материала для получения магнитного клина в виде листов и плит включает смешение ферромагнитного компонента с эпоксидной смолой, отверждение и заливку получаемой массы в пресс-форму, где помещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.

При введении частиц большего размера за счет снижения подвижности в вязкой среде эпоксидного связующего нельзя рассчитывать на формирование слоистой структуры без пересечения отдельных участков ферромагнитных слоев и снижения эффективности воздействия магнитного клина на электромагнитный поток пазового рассеяния и уменьшение добавочных потерь двигателя. К такому же результату приводит использование наночастиц магнетика и магнитной обработки напряженностью 300 эрстед.

Введение наночастиц магнетита обеспечивает высокую подвижность частиц в вязкой среде эпоксидного связующего при прессовании магнитодиэлектрической массы с армирующим элементом в виде стекловолокнистой ткани, что позволяет формировать слоистую структуру материала магнитного клина с четким разделением межфазной границы получения плотной структуры в пределах слоя ферромагнетика. В этом случае ферромагнитный слой работает в условиях воздействия магнитного поля как единая частица, что обеспечивает требуемую магнитную проницаемость материала.

Кроме того, ферромагнитный наполнитель с размером частиц до 100 нм не снижает прочностных характеристик отвержденной эпоксидной смолы.

Степень полимеризации эпоксидной смолы предварительно определяется, и магнитная обработка производится при степени отверждения не более 30% от полного.

Пример 1

Смесь ферромагнетика в виде магнетита с размером частиц от 10 до 100 нм, эпоксидной смолы марки К-153, отвердителя, взятых в соотношении: 25 масс.% магнетита, остальное - эпоксидная смола и 10 масс.% отвердителя, тщательно перемешивают и заливают в пресс-форму, в которую предварительно помещают армирующую сетку в виде стекловолокнистой ткани, далее накладывают магнитное поле напряженностью 800 эрстед. Предварительно определяют степень полимеризации магнитодиэлектрической массы и магнитную обработку начинают при степени полимеризации не более 30%.

Металлографический анализ отвержденного материала показывает, что ферромагнитный компонент образует замыкающиеся слои с неравномерным распределением по объему материала. На рис.1 показано распределение ферромагнитного компонента в отвержденной эпоксидной смоле после обработки магнитным полем напряженностью 300 эрстед: 1 - отвержденная эпоксидная смола, 2 - ферромагнитный компонент.

Применение магнитных клиньев, изготовленных из материала подобной структуры, показало, что асинхронный двигатель марки ДМ, по результатам испытаний согласно ГОСТ 25941-83, имел снижение добавочных потерь на 10%.

Пример 2

Смесь ферромагнетика в виде магнетита с размером частиц до 100 нм, эпоксидной смолы марки ЭП-10, отвердителя, взятых в соотношении: 25 вес.% магнетита, остальное - эпоксидная смола и 1-2% отвердителя, тщательно перемешивают и заливают в пресс-форму, в которую предварительно помещают армирующую сетку в виде стекловолокнистой ткани, далее накладывают магнитное поле напряженностью 800 эрстед. Предварительно определяют степень отверждения магнитодиэлектрической массы и магнитную обработку начинают при степени полимеризации не более 30%. Металлографический анализ отвержденного материала показывает, что материал имеет слоистую чередующуюся структуру из слоев отвержденного полимера и ферромагнитного наполнителя. Слои ферромагнитного компонента не замыкаются друг на друге. Слой ферромагнитного компонента имеет высокоплотную структуру, что обеспечивает высокую магнитную проницаемость слоя. На рис.2 показано распределение ферромагнитного компонента в отвержденной эпоксидной смоле после обработки магнитным полем напряженностью 800 эрстед: 1 - отвержденная эпоксидная смола; 2 - ферромагнитный компонент.

Применение магнитных клиньев, изготовленных из материала, показало, что асинхронный двигатель марки ДМ, по результатам испытаний согласно ГОСТ 25941-83, имел снижение вредных потерь на 30%, что подтверждает технический результат предлагаемого изобретения.

Способ получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин, включающий смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ МАГНИТНОГО КЛИНА
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ МАГНИТНОГО КЛИНА
Источник поступления информации: Роспатент

Показаны записи 111-114 из 114.
09.06.2019
№219.017.7fb4

Роторный ветрогидродвигатель

Изобретение относится к роторным энергоустановкам, использующим кинетическую энергию ветра или потока воды для преобразования ее в механическую энергию. Роторный ветрогидродвигатель содержит вал, соединенный с дисками, между которыми установлены на периферии на своих осях лопасти с возможностью...
Тип: Изобретение
Номер охранного документа: 0002464443
Дата охранного документа: 20.10.2012
19.06.2019
№219.017.8bda

Способ получения парацетамола

Предложен новый способ получения парацетамола, заключающийся в восстановлении п-нитрозофенола, проводимом в этилацетате в присутствии Pd/C-содержащего катализатора при давлении водорода 2,0-4,0 атм и температуре 20-50°С, последующем ацилировании образующегося п-аминофенола и выделении целевого...
Тип: Изобретение
Номер охранного документа: 0002461543
Дата охранного документа: 20.09.2012
10.07.2019
№219.017.b13b

Способ определения производительности плавильного агрегата

Изобретение относится к измерительной технике для контроля технологического процесса производства теплоизоляционных изделий из минеральной ваты в промышленности строительных материалов, в частности к способу для определения производительности плавильного агрегата. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002469962
Дата охранного документа: 20.12.2012
31.07.2019
№219.017.ba79

Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации

Изобретение относится к области радиолокации с частотной манипуляцией непрерывного излучения (ЧМНИ) радиоволн и может быть использовано для обнаружения движущихся целей, измерения расстояния до объекта локации, скорости и направления движения. Достигаемый технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002695799
Дата охранного документа: 29.07.2019
Показаны записи 161-166 из 166.
19.01.2018
№218.016.0630

Реакционная камера установки для получения дисперсного нитрида алюминия

Изобретение относится к составным частям устройств для получения полупроводниковых материалов, а именно дисперсного нитрида алюминия. Реакционная камера выполнена из жаропрочной стали, футерована нитридом алюминия, снабжена герметично соединенными с корпусом камеры средством для отвода газов и...
Тип: Изобретение
Номер охранного документа: 0002631076
Дата охранного документа: 18.09.2017
20.01.2018
№218.016.1b54

Способ наноструктурирующего упрочнения поверхностного слоя прецизионных деталей выглаживанием и система для его осуществления

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем....
Тип: Изобретение
Номер охранного документа: 0002635987
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.36be

Сцинтилляционный гамма-спектрометр

Изобретение относится к области сцинтилляционных γ-спектрометров, точнее к спектрометрам энергий на основе сцинтилляторов NaI:Tl, CsI:Tl, CsI:Na, LaCl:Ce и других, характеризующихся многокомпонентными световыми вспышками с сильной зависимостью постоянных времени высвечивания от температуры...
Тип: Изобретение
Номер охранного документа: 0002646542
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.489f

Теплопроводящая паста

Изобретение относится к области создания теплопроводящих материалов и может быть использовано для сопряжения теплонапряженных различных устройств и деталей. Теплопроводная паста содержит теплопроводный неорганический наполнитель в виде частиц нитрида алюминия и связующее в виде органического...
Тип: Изобретение
Номер охранного документа: 0002651035
Дата охранного документа: 18.04.2018
19.04.2019
№219.017.2b91

Якорь многофазной электрической машины

Изобретение относится к области электротехники. Технический результат - уменьшение тормозных электромагнитных моментов, уменьшение дополнительных потерь от продольных вихревых токов в листах электротехнической стали ярма статора. Якорь выполняется из двух частей, каждая из которых имеет длину...
Тип: Изобретение
Номер охранного документа: 0002684898
Дата охранного документа: 16.04.2019
31.05.2019
№219.017.711a

Способ получения нитридного материала

Изобретение относится к химической технологии получения нитридных материалов и может быть использовано при изготовлении керамических, металлокерамических, композиционных материалов. Для получения нитридного материала приводят в контакт порошкообразный материал из гексафтортитаната натрия,...
Тип: Изобретение
Номер охранного документа: 0002689581
Дата охранного документа: 28.05.2019
+ добавить свой РИД