×
20.04.2015
216.013.4290

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА

Вид РИД

Изобретение

№ охранного документа
0002548538
Дата охранного документа
20.04.2015
Аннотация: Способ включает закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер. Для повышения точности диагностики в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, затем осуществляют резание, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла. 6 ил.
Основные результаты: Способ диагностики шпиндельного узла, включающий закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер для определения динамического качества шпиндельного узла, отличающийся тем, что в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, стенки которого имеют радиальное направление, затем осуществляют резание с выходом и входом инструмента в паз заготовки при цилиндрическом точении с обеспечением импульсного нагружения всей технологической системы станка, включая шпиндельный узел, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла.

Изобретение предназначено для проведения диагностики шпиндельных узлов металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка и состоянии подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - С. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях по строго определенной методике со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что, контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с контролем температуры проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. В23В 25/06, G01M 13/02 - прототип. Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрический образ" в трехмерном пространстве, по которому определяют динамическую податливость с помощью построения амплитудно-частотной характеристики (АЧХ) (податливости, подвижности или ускоряемости), при этом АЧХ строится с помощью вибратора или динамометрического молотка, и чем больше максимум на АЧХ, тем хуже считается характеристика.

Недостатком известного технического решения является сравнительно невысокая точность определения качества шпиндельного узла, так как получаемые АЧХ имели много спектральных максимумов, значения АЧХ по разным направлениям воздействия получались разные, и учитывать их совокупный эффект объективно было невозможно, при этом АЧХ получались в статике, что меняло условия работы шпинделя, и строились без нагрузки шпинделя, что тоже меняло условия реальной работы шпинделя.

Технически достижимым результатом является повышение точности определения качества шпиндельного узла.

Это достигается тем, что в способе диагностики шпиндельного узла, заключающимся в том, что сначала фиксируют сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки шпинделя, а потом направляют их в компьютер, где производят построение траектории оси оправки шпинделя, на станине закрепляют шпиндельную бабку со шпиндельным узлом, в шпинделе которого закрепляют оправку с продольным, вдоль оси шпинделя, пазом, предназначенная для испытания при резании, при этом края паза имеют строго радиальное направление для того, а импульсное нагружение создают путем выхода и входа инструмента в паз оправки при цилиндрическом точении, что обуславливает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел, при этом подаваемое на исследуемый объект усилие измеряют с помощью пьезоэлектрических динамометров, жестко закрепленных на режущем инструменте и расположенных во взаимно-перпендикулярных плоскостях, сигналы с которых поступают на преобразователь сигналов, соединенный по линии связи с управляющим блоком, а в верхней части шпиндельного узла жестко закрепляют трехкомпонентный акселерометр, выполняющий измерение колебаний по трем координатам X, Y, Z, сигналы с которого поступают на управляющий блок, содержащий компьютер со специально ориентированным пакетом программ для выработки параметров входного воздействия, генерирующего импульсное нагружение шпинделя, и получения ответной реакции этого воздействия в виде амплитудно-частотных характеристик шпинделя, а также отображения изображений получаемых характеристик по трем координатам: X, Y, Z.

На фиг.1 представлена схема устройства для реализации способа определения динамического качества шпиндельного узла, на фиг.2 - поперечное сечение оправки с пазом, закрепленной в шпиндельном узле, и предназначенной для испытания при резании, на фиг.3 - пример АЧХ по ускоряемости по двум направлениям осей для станка №1, на фиг.4 - пример АЧХ ускоряемости по двум направлениям для станка №2, на фиг.5 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) для станка №2, на фиг.6 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) для станка №1.

Устройство для реализации способа определения динамического качества шпиндельного узла состоит из станины 1 (фиг.1), на которой посредством опор закреплена шпиндельная бабка 2 со шпиндельным узлом 3, установленном в подшипниках качения, в котором закреплена оправка 5 с продольным, вдоль оси шпинделя, пазом 6, предназначенная для испытания при резании, при этом края паза 6 (фиг.2) имеют строго радиальное направление для того, чтобы выход и вход в паз режущего инструмента 7 был коротким по времени. Выход и вход инструмента в такой паз при цилиндрическом точении заготовки создает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел. Реакция шпиндельного узла на такое импульсное возмущающее воздействие более объективно оценивает динамическое качество шпиндельного узла 3. Паз 6 выполнен заданной глубины, реализующей амплитуду входного импульсного воздействия, а частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка, паз 6 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 5, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 5. Подаваемое на исследуемый объект усилие измеряют с помощью пьезоэлектрических динамометров 8 и 9, жестко закрепленных на режущем инструменте 7, и расположенных во взаимно перпендикулярных плоскостях, сигналы с которых поступают на преобразователь сигналов 10, соединенный по линии связи 11 с управляющим блоком 12. В верхней части шпиндельного узла 3 жестко закреплен трехкомпонентный акселерометр 4, выполняющий измерение колебаний по трем координатам X, Y, Z, сигналы с которого также поступают на управляющий блок 12, содержащий компьютер со специально ориентированным пакетом программ для выработки параметров входного воздействия, генерирующего импульсное нагружение шпинделя, и получения ответной реакции этого воздействия в виде амплитудно-частотных характеристик (АЧХ) шпинделя 3, а также отображения изображений получаемых АЧХ по трем координатам: X, Y, Z.

Способ определения динамического качества шпиндельного узла осуществляют следующим образом.

Предлагается способ получения информации о динамическом качестве шпиндельного узла по результатам резания в строго определенных условиях (режимы, операция, инструмент, заготовка, материал и т.п.). В качестве обрабатываемой детали берется оправка 5 с пазом 6, края которого имеют строго радиальное направление для того, чтобы выход и вход в паз режущего инструмента был коротким. Выход и вход инструмента в такой паз при цилиндрическом точении заготовки создает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел. Реакция шпиндельного узла на такое импульсное возмущающее воздействие более объективно оценивает динамическое качество шпиндельного узла станка.

В качестве примера рассмотрим результаты исследований 2-х одинаковых шлифовальных шпинделей на подшипниках качения.

На фиг.1 и 2 показаны АЧХ по ускоряемости, построенные по двум взаимно перпендикулярным направлениям для совершенно одинаковых токарных станков. Видно, что АЧХ различны для направлений и для станков 1 и 2. АЧХ имеют много экстремумов, оценить качество шпинделей трудно. У станка №1 амплитуда АЧХ на 370 Гц выше, но на 1000 Гц ниже по сравнению со станком №2.

На фиг.3 представлена АЧХ по ускоряемости по двум направлениям осей для станка №1, а на фиг.4 - АЧХ ускоряемости по двум направлениям для станка №2. На фиг.5 изображен пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) (Станок №2), а на фиг.6 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) (Станок №1).

В способе предлагается в процессе обработки оправки (или заготовки) с пазом фиксировать вибрации на корпусах шпинделя и режущего инструмента. На режущем инструменте лучше фиксировать высокочастотные вибрации (на фиг.5 диапазон 2,8-5.6 кГц), на шпинделе наиболее опасный (например, где наблюдаются наибольшие вибрации по перемещению) диапазон (на фиг.5 до 1 кГц). Вибрации на режущем инструменте четко показывают, где начало, а где конец резания участка поверхности между выходами инструмента в паз. Из записи вибраций на шпиндельном узле станка выбирают два участка: 1) участок после момента входа инструмента в зону резания (участок А на фиг.5 - участок возмущенного движения); 2) участок спокойного резания перед выходом инструмента в паз (участок В на фиг.5). Качество динамических характеристик шпиндельного узла станка оценивают по величине соотношения эффективных значений (СКЗ) вибрации на участке А и участке В. Для станка №2 (фиг.5) это соотношение равно 2,25. На фиг.6 показан пример записи, аналогичной рис.3, но для станка №1.

Сравнение фиг.5 и 6 показывает, что шпиндель станка №2 мало реагирует на импульсное нагружение. Для него соотношение эффективных значений для участков А и В равно 1,1. Это соотношение может выступать в качестве интегрального критерия динамического качества шпиндельного узла станка. При этом легко заметить, что возмущение на шпиндельном узле №2 продолжается довольно длительное время после прохождения паза. Повышенные колебания на шпиндельном узле станка фиксируются примерно еще на 40% от оборота заготовки.

Способ диагностики шпиндельного узла, включающий закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер для определения динамического качества шпиндельного узла, отличающийся тем, что в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, стенки которого имеют радиальное направление, затем осуществляют резание с выходом и входом инструмента в паз заготовки при цилиндрическом точении с обеспечением импульсного нагружения всей технологической системы станка, включая шпиндельный узел, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла.
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
Источник поступления информации: Роспатент

Показаны записи 831-840 из 2 438.
20.04.2016
№216.015.3442

Пакет тарельчатых пружин

Изобретение относится к машиностроению. Пакет пружин включает в себя две пары тарельчатых пружин, расположенных с зазором в цилиндрическом корпусе с проточкой. Каждая пара состоит из оппозитно расположенных и подвижно соединенных между собой большими основаниями конических дисков. Основание и...
Тип: Изобретение
Номер охранного документа: 0002581960
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3444

Устройство для очистки воды

Изобретение относится к очистным сооружениям и может быть использовано на моечных станциях автотранспорта. Устройство для очистки воды содержит цилиндрический корпус с крышкой и днищем, в котором расположен активатор процесса, выполненный в виде инертной насадки. В верхней части корпуса...
Тип: Изобретение
Номер охранного документа: 0002581381
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.34ab

Флотационно-фильтрационная установка

Изобретение относится к очистным сооружениям, используемым на моечных станциях автотранспорта. Флотационно-фильтрационная установка содержит заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, камеру флотации с фильтром и слоем фильтрующей загрузки. На входе...
Тип: Изобретение
Номер охранного документа: 0002581390
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3515

Многосекционный глушитель кочетова

Глушитель предназначен для глушения шума компрессорных станций и испытательных боксов для газотурбинных двигателей. Глушитель содержит цилиндрический цоколь, эжектор, выравнивающую решетку, на которой закреплен звукопоглощающий блок, состоящий из секций, причем в каждой секции послойно...
Тип: Изобретение
Номер охранного документа: 0002581966
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.355f

Виброизолятор комбинированный кочетова

Изобретение относится к машиностроению. Виброизолятор содержит корпус и соединенные между собой упругие элементы. В корпусе последовательно установлены упругий кольцевой элемент и тарельчатый равночастотный элемент, которые фиксируются по внутреннему диаметру на коаксиально расположенном с...
Тип: Изобретение
Номер охранного документа: 0002581236
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3565

Пакет тарельчатых пружин кочетова

Изобретение относится к машиностроению. Пакет пружин включает в себя две пары тарельчатых пружин. Каждая пара состоит из оппозитно расположенных и подвижно соединенных между собой большими основаниями конических дисков. Число пар дисков зависит от жесткости и величины хода пружины. Тарельчатые...
Тип: Изобретение
Номер охранного документа: 0002581229
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3570

Звукопоглотитель кочетова для глушителей шума компрессорных станций

Звукопоглотитель предназначен для глушения шума компрессорных станций и испытательных боксов для газотурбинных двигателей. Звукопоглотитель содержит цилиндрический каркас в виде перфорированной втулки и крышек, заполненный звукопоглотителем, а снаружи втулки расположен слой акустически...
Тип: Изобретение
Номер охранного документа: 0002581969
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35bc

Отстойник с ленточным скребковым устройством

Изобретение относится к очистным сооружениям. Отстойник с ленточным скребковым устройством содержит корпус коробчатого типа с днищем, внутри корпуса размещено скребковое устройство. Скребковое устройство состоит из приводного механизма ленты с закрепленными на ней скребками и направляющего...
Тип: Изобретение
Номер охранного документа: 0002581388
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3624

Мобильная установка кочетова пожаротушения с двухфазным распылителем

Изобретение относится к средствам пожаротушения, в частности переносным (ранцевым). Мобильная установка пожаротушения с двухфазным распылителем содержит емкость с огнетушащей жидкостью, которая устанавливается на заплечном ранце оператора, систему подачи жидкости вытеснительного типа. Система...
Тип: Изобретение
Номер охранного документа: 0002581379
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36c3

Акустический экран для безопасной деятельности человека-оператора

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Акустический экран содержит каркас с откосами из металлических листов с расположенными в нем секциями акустических панелей, которые выполнены как шумоотражающими светопрозрачными, так и непрозрачными...
Тип: Изобретение
Номер охранного документа: 0002581174
Дата охранного документа: 20.04.2016
Показаны записи 831-840 из 2 436.
20.04.2016
№216.015.3624

Мобильная установка кочетова пожаротушения с двухфазным распылителем

Изобретение относится к средствам пожаротушения, в частности переносным (ранцевым). Мобильная установка пожаротушения с двухфазным распылителем содержит емкость с огнетушащей жидкостью, которая устанавливается на заплечном ранце оператора, систему подачи жидкости вытеснительного типа. Система...
Тип: Изобретение
Номер охранного документа: 0002581379
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36c3

Акустический экран для безопасной деятельности человека-оператора

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Акустический экран содержит каркас с откосами из металлических листов с расположенными в нем секциями акустических панелей, которые выполнены как шумоотражающими светопрозрачными, так и непрозрачными...
Тип: Изобретение
Номер охранного документа: 0002581174
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.373e

Пакет пружин кочетова

Изобретение относится к машиностроению. Пакет пружин включает в себя, по крайней мере, две пары тарельчатых пружин. Каждая пара состоит из оппозитно расположенных и подвижно соединенных между собой большими основаниями конических дисков. Число пар дисков зависит от жесткости и величины хода...
Тип: Изобретение
Номер охранного документа: 0002581241
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3753

Штучный звукопоглотитель типа кочстар

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Штучный звукопоглотитель состоит из перфорированного каркаса, заполненного звукопоглощающим материалом, помещенным в защитную оболочку. Каркас выполнен в виде осесимметричного тела вращения цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002581168
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3784

Упругий элемент тарельчатого типа

Изобретение относится к машиностроению. Упругий элемент содержит два симметрично расположенных относительно разделительного диска тарельчатых упругих элемента. Каждый из упругих элементов содержит тарельчатую поверхность в виде усеченного конуса, на которой выполнено три сквозных паза с...
Тип: Изобретение
Номер охранного документа: 0002582636
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3819

Элемент насадки кочетова для пылегазоочистных аппаратов

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Это достигается тем, что в элементе насадки для пылегазоочистных аппаратов, содержащем корпус и элементы,...
Тип: Изобретение
Номер охранного документа: 0002582709
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.382d

Виброизолятор кочетова с тросовым демпфером

Изобретение относится к машиностроению. Виброизолятор содержит плоские упругие и фрикционные демпфирующие элементы. Плоские упругие элементы выполнены в виде пакета упругих элементов арочного типа, состоящих из набора чередующихся во взаимно перпендикулярных направлениях плоских пружин,...
Тип: Изобретение
Номер охранного документа: 0002582633
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3833

Виброизолятор шайбовый сетчатый кочетова

Изобретение относится к машиностроению. Виброизолятор содержит основание с крышкой, между которыми расположены упругие сетчатые элементы и инерционная масса. Основание выполнено и виде пластины с крепежными отверстиями. Крышка выполнена с центральным резьбовым отверстием для крепления...
Тип: Изобретение
Номер охранного документа: 0002582632
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3882

Пакет кольцевых пружин

Изобретение относится к машиностроению. Пакет кольцевых пружин состоит из внешних и внутренних кольцевых упругих конусных дисков. На каждом из дисков выполнено по два сферических сегмента. Диски размещены между основанием и крышкой. Основание выполнено в виде цилиндрического стакана, на который...
Тип: Изобретение
Номер охранного документа: 0002582634
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38af

Способ адсорбции кочетова

Изобретение относится к оборудованию для проведения адсорбционных процессов в системе газ/пар-адсорбент. Газовый поток подают в нижнюю часть аппарата через распределительную сетку. Затем пропускают через внешний и внутренний перфорированные цилиндры, между которыми размещают адсорбент....
Тип: Изобретение
Номер охранного документа: 0002582711
Дата охранного документа: 27.04.2016
+ добавить свой РИД