×
20.04.2015
216.013.4290

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА

Вид РИД

Изобретение

№ охранного документа
0002548538
Дата охранного документа
20.04.2015
Аннотация: Способ включает закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер. Для повышения точности диагностики в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, затем осуществляют резание, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла. 6 ил.
Основные результаты: Способ диагностики шпиндельного узла, включающий закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер для определения динамического качества шпиндельного узла, отличающийся тем, что в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, стенки которого имеют радиальное направление, затем осуществляют резание с выходом и входом инструмента в паз заготовки при цилиндрическом точении с обеспечением импульсного нагружения всей технологической системы станка, включая шпиндельный узел, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла.

Изобретение предназначено для проведения диагностики шпиндельных узлов металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка и состоянии подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - С. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях по строго определенной методике со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что, контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с контролем температуры проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. В23В 25/06, G01M 13/02 - прототип. Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрический образ" в трехмерном пространстве, по которому определяют динамическую податливость с помощью построения амплитудно-частотной характеристики (АЧХ) (податливости, подвижности или ускоряемости), при этом АЧХ строится с помощью вибратора или динамометрического молотка, и чем больше максимум на АЧХ, тем хуже считается характеристика.

Недостатком известного технического решения является сравнительно невысокая точность определения качества шпиндельного узла, так как получаемые АЧХ имели много спектральных максимумов, значения АЧХ по разным направлениям воздействия получались разные, и учитывать их совокупный эффект объективно было невозможно, при этом АЧХ получались в статике, что меняло условия работы шпинделя, и строились без нагрузки шпинделя, что тоже меняло условия реальной работы шпинделя.

Технически достижимым результатом является повышение точности определения качества шпиндельного узла.

Это достигается тем, что в способе диагностики шпиндельного узла, заключающимся в том, что сначала фиксируют сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки шпинделя, а потом направляют их в компьютер, где производят построение траектории оси оправки шпинделя, на станине закрепляют шпиндельную бабку со шпиндельным узлом, в шпинделе которого закрепляют оправку с продольным, вдоль оси шпинделя, пазом, предназначенная для испытания при резании, при этом края паза имеют строго радиальное направление для того, а импульсное нагружение создают путем выхода и входа инструмента в паз оправки при цилиндрическом точении, что обуславливает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел, при этом подаваемое на исследуемый объект усилие измеряют с помощью пьезоэлектрических динамометров, жестко закрепленных на режущем инструменте и расположенных во взаимно-перпендикулярных плоскостях, сигналы с которых поступают на преобразователь сигналов, соединенный по линии связи с управляющим блоком, а в верхней части шпиндельного узла жестко закрепляют трехкомпонентный акселерометр, выполняющий измерение колебаний по трем координатам X, Y, Z, сигналы с которого поступают на управляющий блок, содержащий компьютер со специально ориентированным пакетом программ для выработки параметров входного воздействия, генерирующего импульсное нагружение шпинделя, и получения ответной реакции этого воздействия в виде амплитудно-частотных характеристик шпинделя, а также отображения изображений получаемых характеристик по трем координатам: X, Y, Z.

На фиг.1 представлена схема устройства для реализации способа определения динамического качества шпиндельного узла, на фиг.2 - поперечное сечение оправки с пазом, закрепленной в шпиндельном узле, и предназначенной для испытания при резании, на фиг.3 - пример АЧХ по ускоряемости по двум направлениям осей для станка №1, на фиг.4 - пример АЧХ ускоряемости по двум направлениям для станка №2, на фиг.5 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) для станка №2, на фиг.6 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) для станка №1.

Устройство для реализации способа определения динамического качества шпиндельного узла состоит из станины 1 (фиг.1), на которой посредством опор закреплена шпиндельная бабка 2 со шпиндельным узлом 3, установленном в подшипниках качения, в котором закреплена оправка 5 с продольным, вдоль оси шпинделя, пазом 6, предназначенная для испытания при резании, при этом края паза 6 (фиг.2) имеют строго радиальное направление для того, чтобы выход и вход в паз режущего инструмента 7 был коротким по времени. Выход и вход инструмента в такой паз при цилиндрическом точении заготовки создает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел. Реакция шпиндельного узла на такое импульсное возмущающее воздействие более объективно оценивает динамическое качество шпиндельного узла 3. Паз 6 выполнен заданной глубины, реализующей амплитуду входного импульсного воздействия, а частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка, паз 6 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 5, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 5. Подаваемое на исследуемый объект усилие измеряют с помощью пьезоэлектрических динамометров 8 и 9, жестко закрепленных на режущем инструменте 7, и расположенных во взаимно перпендикулярных плоскостях, сигналы с которых поступают на преобразователь сигналов 10, соединенный по линии связи 11 с управляющим блоком 12. В верхней части шпиндельного узла 3 жестко закреплен трехкомпонентный акселерометр 4, выполняющий измерение колебаний по трем координатам X, Y, Z, сигналы с которого также поступают на управляющий блок 12, содержащий компьютер со специально ориентированным пакетом программ для выработки параметров входного воздействия, генерирующего импульсное нагружение шпинделя, и получения ответной реакции этого воздействия в виде амплитудно-частотных характеристик (АЧХ) шпинделя 3, а также отображения изображений получаемых АЧХ по трем координатам: X, Y, Z.

Способ определения динамического качества шпиндельного узла осуществляют следующим образом.

Предлагается способ получения информации о динамическом качестве шпиндельного узла по результатам резания в строго определенных условиях (режимы, операция, инструмент, заготовка, материал и т.п.). В качестве обрабатываемой детали берется оправка 5 с пазом 6, края которого имеют строго радиальное направление для того, чтобы выход и вход в паз режущего инструмента был коротким. Выход и вход инструмента в такой паз при цилиндрическом точении заготовки создает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел. Реакция шпиндельного узла на такое импульсное возмущающее воздействие более объективно оценивает динамическое качество шпиндельного узла станка.

В качестве примера рассмотрим результаты исследований 2-х одинаковых шлифовальных шпинделей на подшипниках качения.

На фиг.1 и 2 показаны АЧХ по ускоряемости, построенные по двум взаимно перпендикулярным направлениям для совершенно одинаковых токарных станков. Видно, что АЧХ различны для направлений и для станков 1 и 2. АЧХ имеют много экстремумов, оценить качество шпинделей трудно. У станка №1 амплитуда АЧХ на 370 Гц выше, но на 1000 Гц ниже по сравнению со станком №2.

На фиг.3 представлена АЧХ по ускоряемости по двум направлениям осей для станка №1, а на фиг.4 - АЧХ ускоряемости по двум направлениям для станка №2. На фиг.5 изображен пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) (Станок №2), а на фиг.6 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) (Станок №1).

В способе предлагается в процессе обработки оправки (или заготовки) с пазом фиксировать вибрации на корпусах шпинделя и режущего инструмента. На режущем инструменте лучше фиксировать высокочастотные вибрации (на фиг.5 диапазон 2,8-5.6 кГц), на шпинделе наиболее опасный (например, где наблюдаются наибольшие вибрации по перемещению) диапазон (на фиг.5 до 1 кГц). Вибрации на режущем инструменте четко показывают, где начало, а где конец резания участка поверхности между выходами инструмента в паз. Из записи вибраций на шпиндельном узле станка выбирают два участка: 1) участок после момента входа инструмента в зону резания (участок А на фиг.5 - участок возмущенного движения); 2) участок спокойного резания перед выходом инструмента в паз (участок В на фиг.5). Качество динамических характеристик шпиндельного узла станка оценивают по величине соотношения эффективных значений (СКЗ) вибрации на участке А и участке В. Для станка №2 (фиг.5) это соотношение равно 2,25. На фиг.6 показан пример записи, аналогичной рис.3, но для станка №1.

Сравнение фиг.5 и 6 показывает, что шпиндель станка №2 мало реагирует на импульсное нагружение. Для него соотношение эффективных значений для участков А и В равно 1,1. Это соотношение может выступать в качестве интегрального критерия динамического качества шпиндельного узла станка. При этом легко заметить, что возмущение на шпиндельном узле №2 продолжается довольно длительное время после прохождения паза. Повышенные колебания на шпиндельном узле станка фиксируются примерно еще на 40% от оборота заготовки.

Способ диагностики шпиндельного узла, включающий закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер для определения динамического качества шпиндельного узла, отличающийся тем, что в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, стенки которого имеют радиальное направление, затем осуществляют резание с выходом и входом инструмента в паз заготовки при цилиндрическом точении с обеспечением импульсного нагружения всей технологической системы станка, включая шпиндельный узел, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла.
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
Источник поступления информации: Роспатент

Показаны записи 641-650 из 2 438.
10.08.2015
№216.013.68f5

Способ прогнозирования развития чрезвычайной ситуации на взрывоопасном объекте

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем...
Тип: Изобретение
Номер охранного документа: 0002558422
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69f5

Стенд для исследования ударных нагрузок систем виброизоляции

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура. На основании установлена...
Тип: Изобретение
Номер охранного документа: 0002558678
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69f6

Стенд для виброакустических испытаний образцов и моделей

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Устройство содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему. В качестве генератора...
Тип: Изобретение
Номер охранного документа: 0002558679
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69ff

Способ испытаний многомассовых систем виброизоляции

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик. Затем сравнивают полученные...
Тип: Изобретение
Номер охранного документа: 0002558688
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a41

Система предотвращения захвата террористами объектов с большим скоплением материальных и людских ресурсов

Система предотвращения захвата террористами объектов с большим скоплением материальных и людских ресурсов содержит систему управления полетом, черный ящик, дистанционно-управляемое стрелковое оружие с видеокамерой, приводы, дисплей, пульт управления стрельбой, видеокамеру общего обзора,...
Тип: Изобретение
Номер охранного документа: 0002558754
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a4d

Виброизолятор кочетова для сейсмических фундаментов зданий

Изобретение относится к средствам защиты зданий и сооружений от сейсмической нагрузки. Виброизолятор содержит корпус, основание в виде круглого подпятника, пружину и резьбовую втулку, соединяющую пружину с виброизолируемым объектом. Нижний и верхний ограничители хода пружины выполнены из...
Тип: Изобретение
Номер охранного документа: 0002558766
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a4e

Виброизолятор типа ксс для технологического оборудования

Изобретение относится к машиностроению. Виброизолятор содержит корпус и упругий элемент, взаимодействующий с объектом. Корпус выполнен в виде основания, на котором закреплены посредством слоя литьевого полиуретана два направляющих стакана с днищами, обращенными в сторону основания. Внутри...
Тип: Изобретение
Номер охранного документа: 0002558767
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a51

Демпфер сухого трения кочетова, встроенный в пружинный виброизолятор

Изобретение относится к машиностроению. Виброизолятор содержит нижнюю и верхнюю опорные пластины. Между пластинами коаксиально и концентрично установлены наружная с правым и внутренняя с левым углами подъема витков пружины. Нижняя опорная пластина является основанием, на котором нижние фланцы...
Тип: Изобретение
Номер охранного документа: 0002558770
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a56

Виброизолятор для технологического оборудования

Изобретение относится к машиностроению. Виброизолятор содержит корпус и упругий элемент, взаимодействующий с объектом. Корпус выполнен в виде основания, на котором закреплены посредством слоя литьевого полиуретана два направляющих стакана с днищами, обращенными в сторону основания. Внутри...
Тип: Изобретение
Номер охранного документа: 0002558775
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a80

Штучный звукопоглотитель кочетова

Изобретение относится к промышленной акустике. Технический результат - повышение эффективности шумоглушения на высоких частотах. В штучном звукопоглотителе, состоящем из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания, расположен звукопоглощающий элемент,...
Тип: Изобретение
Номер охранного документа: 0002558817
Дата охранного документа: 10.08.2015
Показаны записи 641-650 из 2 436.
10.08.2015
№216.013.6a51

Демпфер сухого трения кочетова, встроенный в пружинный виброизолятор

Изобретение относится к машиностроению. Виброизолятор содержит нижнюю и верхнюю опорные пластины. Между пластинами коаксиально и концентрично установлены наружная с правым и внутренняя с левым углами подъема витков пружины. Нижняя опорная пластина является основанием, на котором нижние фланцы...
Тип: Изобретение
Номер охранного документа: 0002558770
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a56

Виброизолятор для технологического оборудования

Изобретение относится к машиностроению. Виброизолятор содержит корпус и упругий элемент, взаимодействующий с объектом. Корпус выполнен в виде основания, на котором закреплены посредством слоя литьевого полиуретана два направляющих стакана с днищами, обращенными в сторону основания. Внутри...
Тип: Изобретение
Номер охранного документа: 0002558775
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a80

Штучный звукопоглотитель кочетова

Изобретение относится к промышленной акустике. Технический результат - повышение эффективности шумоглушения на высоких частотах. В штучном звукопоглотителе, состоящем из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания, расположен звукопоглощающий элемент,...
Тип: Изобретение
Номер охранного документа: 0002558817
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a81

Амортизатор одноразового действия с разрущающимися элементами

Изобретение относится к защитным устройствам, например амортизаторам, применяющимся во взрывоопасных объектах. Технически достижимый результат - повышение надежности срабатывания взрывозащитных устройств при аварийном взрыве на объекте. Это достигается тем, что в амортизаторе одноразового...
Тип: Изобретение
Номер охранного документа: 0002558818
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a83

Взрывозащитная разрушающаяся конструкция кочетова ограждения зданий

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах, таких как легкосбрасываемые панели и кровли, противовзрывные ограждения и заслонки, клапаны избыточного давления. Технический результат - повышение надежности срабатывания разрушающихся...
Тип: Изобретение
Номер охранного документа: 0002558820
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a85

Взрывозащитная разрушающаяся конструкция ограждения зданий

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах, таких как легкосбрасываемые панели и кровли, противовзрывные ограждения и заслонки, клапаны избыточного давления. Технический результат - повышение надежности срабатывания разрушающихся...
Тип: Изобретение
Номер охранного документа: 0002558822
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a88

Противовзрывная панель типа кссс

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах, таких как легкосбрасываемые панели и кровли, противовзрывные ограждения и заслонки, клапаны избыточного давления. Технически достижимый результат - повышение надежности срабатывания...
Тип: Изобретение
Номер охранного документа: 0002558825
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cac

Установка для извлечения ртути из люминисцентных ламп

Изобретение относится к установкам для утилизации люминесцентных ламп. Установка для извлечения содержит блок дробления ламп, контейнер с демеркуризационным раствором, барабан, при вращении лопастей которого происходит измельчение стекла ламп, поступающих по транспортеру в лоток, при этом...
Тип: Изобретение
Номер охранного документа: 0002559378
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cbb

Тарельчатый упругий элемент с комбинированным демпфером

Изобретение относится к машиностроению. Тарельчатый упругий элемент содержит два плоских упругих коаксиально расположенных кольца с центральным отверстием. Кольца расположены в параллельных горизонтальных плоскостях и жестко соединены между собой посредством двух упругих элементов. Упругие...
Тип: Изобретение
Номер охранного документа: 0002559393
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cd9

Виброизолятор комбинированный с сетчатым демпфером

Изобретение относится к средствам защиты человека-оператора от вредного влияния вибрации. Виброизолятор содержит корпус, основание, пружину, нижний и верхний ограничители хода пружины, выполненные из эластомера, и резьбовую втулку. Корпус жестко связан с основанием, выполненным в виде круглого...
Тип: Изобретение
Номер охранного документа: 0002559423
Дата охранного документа: 10.08.2015
+ добавить свой РИД