×
20.04.2015
216.013.4290

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА

Вид РИД

Изобретение

№ охранного документа
0002548538
Дата охранного документа
20.04.2015
Аннотация: Способ включает закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер. Для повышения точности диагностики в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, затем осуществляют резание, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла. 6 ил.
Основные результаты: Способ диагностики шпиндельного узла, включающий закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер для определения динамического качества шпиндельного узла, отличающийся тем, что в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, стенки которого имеют радиальное направление, затем осуществляют резание с выходом и входом инструмента в паз заготовки при цилиндрическом точении с обеспечением импульсного нагружения всей технологической системы станка, включая шпиндельный узел, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла.

Изобретение предназначено для проведения диагностики шпиндельных узлов металлорежущих станков.

В настоящее время промышленность выпускает стенды и приборы для контроля параметров виброакустических сигналов, по которым можно судить о динамике упругой системы станка и состоянии подшипниковых узлов [Балицкий Ф.Я., Иванова М.А., Соколова А.Г., Хомяков Е.И. Виброакустическая диагностика зарождающихся дефектов. - М.: Наука, 1984. - С. 78-83]. Сборка высокоскоростных шпиндельных узлов проводится в термостатированных помещениях по строго определенной методике со строгим контролем отклонений отдельных деталей от заданной геометрии, а после сборки шпиндель подвергается многочасовой обкатке на специальном стенде с регистрацией температуры в нескольких точках узла и момента сопротивления вращению.

К недостаткам известных способов следует отнести то обстоятельство, что, контролируя только температуру, нельзя проникнуть в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой. Сегодня назрела необходимость применения новых методик и способов виброакустической диагностики, позволяющих значительно глубже по сравнению с контролем температуры проникать в сущность процессов, протекающих в шпиндельных узлах при холостом вращении шпинделя, при работе под нагрузкой и при повышении температуры.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ диагностики шпиндельного узла по патенту РФ №2124966, кл. В23В 25/06, G01M 13/02 - прототип. Согласно прототипу диагностика реализуется следующим образом. После выбора режима испытаний станок включается и производится обработка средней части оправки резцом. Сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки, поступают сначала в усилительно-преобразующую аппаратуру, а потом в компьютер, где производится построение траектории оси оправки в двух сечениях. В результате движения вершина резца описывает на поверхности оправки некоторую кривую, которая формирует "геометрический образ" обработанного сечения. Программное обеспечение позволяет производить построение на экране дисплея "геометрический образ" в трехмерном пространстве, по которому определяют динамическую податливость с помощью построения амплитудно-частотной характеристики (АЧХ) (податливости, подвижности или ускоряемости), при этом АЧХ строится с помощью вибратора или динамометрического молотка, и чем больше максимум на АЧХ, тем хуже считается характеристика.

Недостатком известного технического решения является сравнительно невысокая точность определения качества шпиндельного узла, так как получаемые АЧХ имели много спектральных максимумов, значения АЧХ по разным направлениям воздействия получались разные, и учитывать их совокупный эффект объективно было невозможно, при этом АЧХ получались в статике, что меняло условия работы шпинделя, и строились без нагрузки шпинделя, что тоже меняло условия реальной работы шпинделя.

Технически достижимым результатом является повышение точности определения качества шпиндельного узла.

Это достигается тем, что в способе диагностики шпиндельного узла, заключающимся в том, что сначала фиксируют сигналы от датчиков перемещения, расположенных в двух поперечных сечениях оправки шпинделя, а потом направляют их в компьютер, где производят построение траектории оси оправки шпинделя, на станине закрепляют шпиндельную бабку со шпиндельным узлом, в шпинделе которого закрепляют оправку с продольным, вдоль оси шпинделя, пазом, предназначенная для испытания при резании, при этом края паза имеют строго радиальное направление для того, а импульсное нагружение создают путем выхода и входа инструмента в паз оправки при цилиндрическом точении, что обуславливает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел, при этом подаваемое на исследуемый объект усилие измеряют с помощью пьезоэлектрических динамометров, жестко закрепленных на режущем инструменте и расположенных во взаимно-перпендикулярных плоскостях, сигналы с которых поступают на преобразователь сигналов, соединенный по линии связи с управляющим блоком, а в верхней части шпиндельного узла жестко закрепляют трехкомпонентный акселерометр, выполняющий измерение колебаний по трем координатам X, Y, Z, сигналы с которого поступают на управляющий блок, содержащий компьютер со специально ориентированным пакетом программ для выработки параметров входного воздействия, генерирующего импульсное нагружение шпинделя, и получения ответной реакции этого воздействия в виде амплитудно-частотных характеристик шпинделя, а также отображения изображений получаемых характеристик по трем координатам: X, Y, Z.

На фиг.1 представлена схема устройства для реализации способа определения динамического качества шпиндельного узла, на фиг.2 - поперечное сечение оправки с пазом, закрепленной в шпиндельном узле, и предназначенной для испытания при резании, на фиг.3 - пример АЧХ по ускоряемости по двум направлениям осей для станка №1, на фиг.4 - пример АЧХ ускоряемости по двум направлениям для станка №2, на фиг.5 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) для станка №2, на фиг.6 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) для станка №1.

Устройство для реализации способа определения динамического качества шпиндельного узла состоит из станины 1 (фиг.1), на которой посредством опор закреплена шпиндельная бабка 2 со шпиндельным узлом 3, установленном в подшипниках качения, в котором закреплена оправка 5 с продольным, вдоль оси шпинделя, пазом 6, предназначенная для испытания при резании, при этом края паза 6 (фиг.2) имеют строго радиальное направление для того, чтобы выход и вход в паз режущего инструмента 7 был коротким по времени. Выход и вход инструмента в такой паз при цилиндрическом точении заготовки создает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел. Реакция шпиндельного узла на такое импульсное возмущающее воздействие более объективно оценивает динамическое качество шпиндельного узла 3. Паз 6 выполнен заданной глубины, реализующей амплитуду входного импульсного воздействия, а частота входного импульсного воздействия задается скоростью вращения шпинделя. В сечении, перпендикулярном оси шпиндельного узла станка, паз 6 выполнен с наклонными боковыми поверхностями, лежащими в плоскостях, пересекающихся по линии, совпадающей с осью оправки 5, и в плоскости, перпендикулярной оси шпинделя, совпадающей с центром окружности. При этом поверхность, соединяющая боковые плоскости, представляет собой часть цилиндрической поверхности, эквидистантной внешней цилиндрической поверхности оправки 5. Подаваемое на исследуемый объект усилие измеряют с помощью пьезоэлектрических динамометров 8 и 9, жестко закрепленных на режущем инструменте 7, и расположенных во взаимно перпендикулярных плоскостях, сигналы с которых поступают на преобразователь сигналов 10, соединенный по линии связи 11 с управляющим блоком 12. В верхней части шпиндельного узла 3 жестко закреплен трехкомпонентный акселерометр 4, выполняющий измерение колебаний по трем координатам X, Y, Z, сигналы с которого также поступают на управляющий блок 12, содержащий компьютер со специально ориентированным пакетом программ для выработки параметров входного воздействия, генерирующего импульсное нагружение шпинделя, и получения ответной реакции этого воздействия в виде амплитудно-частотных характеристик (АЧХ) шпинделя 3, а также отображения изображений получаемых АЧХ по трем координатам: X, Y, Z.

Способ определения динамического качества шпиндельного узла осуществляют следующим образом.

Предлагается способ получения информации о динамическом качестве шпиндельного узла по результатам резания в строго определенных условиях (режимы, операция, инструмент, заготовка, материал и т.п.). В качестве обрабатываемой детали берется оправка 5 с пазом 6, края которого имеют строго радиальное направление для того, чтобы выход и вход в паз режущего инструмента был коротким. Выход и вход инструмента в такой паз при цилиндрическом точении заготовки создает импульсное нагружение всей технологической системы станка, включая и шпиндельный узел. Реакция шпиндельного узла на такое импульсное возмущающее воздействие более объективно оценивает динамическое качество шпиндельного узла станка.

В качестве примера рассмотрим результаты исследований 2-х одинаковых шлифовальных шпинделей на подшипниках качения.

На фиг.1 и 2 показаны АЧХ по ускоряемости, построенные по двум взаимно перпендикулярным направлениям для совершенно одинаковых токарных станков. Видно, что АЧХ различны для направлений и для станков 1 и 2. АЧХ имеют много экстремумов, оценить качество шпинделей трудно. У станка №1 амплитуда АЧХ на 370 Гц выше, но на 1000 Гц ниже по сравнению со станком №2.

На фиг.3 представлена АЧХ по ускоряемости по двум направлениям осей для станка №1, а на фиг.4 - АЧХ ускоряемости по двум направлениям для станка №2. На фиг.5 изображен пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) (Станок №2), а на фиг.6 - пример записи вибраций с корпуса шпинделя (верхняя запись) и с корпуса режущего инструмента (нижняя запись) (Станок №1).

В способе предлагается в процессе обработки оправки (или заготовки) с пазом фиксировать вибрации на корпусах шпинделя и режущего инструмента. На режущем инструменте лучше фиксировать высокочастотные вибрации (на фиг.5 диапазон 2,8-5.6 кГц), на шпинделе наиболее опасный (например, где наблюдаются наибольшие вибрации по перемещению) диапазон (на фиг.5 до 1 кГц). Вибрации на режущем инструменте четко показывают, где начало, а где конец резания участка поверхности между выходами инструмента в паз. Из записи вибраций на шпиндельном узле станка выбирают два участка: 1) участок после момента входа инструмента в зону резания (участок А на фиг.5 - участок возмущенного движения); 2) участок спокойного резания перед выходом инструмента в паз (участок В на фиг.5). Качество динамических характеристик шпиндельного узла станка оценивают по величине соотношения эффективных значений (СКЗ) вибрации на участке А и участке В. Для станка №2 (фиг.5) это соотношение равно 2,25. На фиг.6 показан пример записи, аналогичной рис.3, но для станка №1.

Сравнение фиг.5 и 6 показывает, что шпиндель станка №2 мало реагирует на импульсное нагружение. Для него соотношение эффективных значений для участков А и В равно 1,1. Это соотношение может выступать в качестве интегрального критерия динамического качества шпиндельного узла станка. При этом легко заметить, что возмущение на шпиндельном узле №2 продолжается довольно длительное время после прохождения паза. Повышенные колебания на шпиндельном узле станка фиксируются примерно еще на 40% от оборота заготовки.

Способ диагностики шпиндельного узла, включающий закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер для определения динамического качества шпиндельного узла, отличающийся тем, что в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, стенки которого имеют радиальное направление, затем осуществляют резание с выходом и входом инструмента в паз заготовки при цилиндрическом точении с обеспечением импульсного нагружения всей технологической системы станка, включая шпиндельный узел, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла.
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
СПОСОБ ДИАГНОСТИКИ ШПИНДЕЛЬНОГО УЗЛА
Источник поступления информации: Роспатент

Показаны записи 471-480 из 2 438.
20.02.2015
№216.013.2835

Автоматическая система пожаротушения

Изобретение относится к противопожарной технике. Технический результат - повышение быстродействия системы пожаротушения, который достигается тем, что в автоматической системе пожаротушения, содержащей сосуд, в котором хранится огнетушащее вещество, пусковой баллон с рабочим газом, сеть...
Тип: Изобретение
Номер охранного документа: 0002541750
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2903

Штучный звукопоглотитель кочетова комбинированного типа

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Технический результат - повышение эффективности шумоглушения на высоких частотах. В штучном звукопоглотителе комбинированного типа, содержащем звукопоглотители активного и реактивного типов, размещенные на...
Тип: Изобретение
Номер охранного документа: 0002541956
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a1b

Центробежная форсунка кочетова

Изобретение относится к средствам распыливания жидкостей и растворов. В центробежной форсунке шнек запрессован в корпус с образованием цилиндрической камеры, расположенной над шнеком соосно диффузору и соединенной с ним последовательно. Шнек выполнен с центральным дроссельным отверстием....
Тип: Изобретение
Номер охранного документа: 0002542236
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a1e

Распылитель жидкости

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. В распылителе жидкости к торцевой поверхности сопла осесимметрично корпусу крепится пластинчатый отбойник....
Тип: Изобретение
Номер охранного документа: 0002542239
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b48

Защитная куртка

Изобретение относится к средствам индивидуальной защиты работников сельскохозяйственного производства. Технический результат - повышение эффективности защиты оператора от механического воздействия. Это достигается тем, что в куртке защитной, состоящей из тканевой подкладки, соединений с...
Тип: Изобретение
Номер охранного документа: 0002542537
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2feb

Флотационно-фильтрационная установка

Изобретение относится к очистным сооружениям. Установка содержит заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, камеру флотации с фильтром и слоем фильтрующей загрузки. Эжектор соединен с байпасным трубопроводом и установлен на входе насосного агрегата....
Тип: Изобретение
Номер охранного документа: 0002543735
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3010

Комбинированный звукопоглотитель кочетова

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Технический результат заключается в повышении эффективности шумоглушения на высоких частотах. Звукопоглотитель комбинированного типа содержит звукопоглотители активного и реактивного типов, размещенные на...
Тип: Изобретение
Номер охранного документа: 0002543772
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3046

Акустическая отделка цеха

Изобретение относится к промышленной акустике. Технический результат изобретения заключается в повышении эффективности шумоглушения. Акустическая конструкция производственных помещений содержит каркас цеха, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими...
Тип: Изобретение
Номер охранного документа: 0002543826
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3047

Акустическая конструкция цеха

Изобретение относится к промышленной акустике. Технический результат изобретения заключается в повышении эффективности шумоглушения. Акустическая конструкция производственных помещений содержит каркас цеха, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими...
Тип: Изобретение
Номер охранного документа: 0002543827
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3066

Кольцевой адсорбер кочетова

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Кольцевой адсорбер содержит цилиндрический корпус с крышкой и днищем, выполненными эллиптической формы, причем в крышке смонтированы загрузочный и смотровой люки, причем загрузочный люк...
Тип: Изобретение
Номер охранного документа: 0002543858
Дата охранного документа: 10.03.2015
Показаны записи 471-480 из 2 436.
10.03.2015
№216.013.3010

Комбинированный звукопоглотитель кочетова

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Технический результат заключается в повышении эффективности шумоглушения на высоких частотах. Звукопоглотитель комбинированного типа содержит звукопоглотители активного и реактивного типов, размещенные на...
Тип: Изобретение
Номер охранного документа: 0002543772
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3046

Акустическая отделка цеха

Изобретение относится к промышленной акустике. Технический результат изобретения заключается в повышении эффективности шумоглушения. Акустическая конструкция производственных помещений содержит каркас цеха, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими...
Тип: Изобретение
Номер охранного документа: 0002543826
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3047

Акустическая конструкция цеха

Изобретение относится к промышленной акустике. Технический результат изобретения заключается в повышении эффективности шумоглушения. Акустическая конструкция производственных помещений содержит каркас цеха, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими...
Тип: Изобретение
Номер охранного документа: 0002543827
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3066

Кольцевой адсорбер кочетова

Изобретение откосится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Кольцевой адсорбер содержит цилиндрический корпус с крышкой и днищем, выполненными эллиптической формы, причем в крышке смонтированы загрузочный и смотровой люки, причем загрузочный люк...
Тип: Изобретение
Номер охранного документа: 0002543858
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3068

Центробежная форсунка с активным распылителем

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. В центробежной форсунке с активным распылителем к торцевой поверхности втулки меньшего диаметра прикреплены по крайней мере два наклонно...
Тип: Изобретение
Номер охранного документа: 0002543860
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3069

Центробежная вихревая форсунка

Изобретение относится к средствам распыливания жидкостей, растворов. В центробежной вихревой форсунке к срезу цилиндрической камеры соосно и жестко прикреплен интенсификатор крутки с внутренней винтовой нарезкой. К торцевой поверхности интенсификатора крутки с внутренней винтовой нарезкой...
Тип: Изобретение
Номер охранного документа: 0002543861
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.306a

Дренчер кочетова

Изобретение относится к противопожарной технике. В дренчере корпус выполнен в виде центральной втулки с внешней шестигранной и внутренней цилиндрической поверхностями. С двух торцевых сторон центральной втулки выполнена внутренняя резьба. К одной из торцевых сторон осесимметрично крепится...
Тип: Изобретение
Номер охранного документа: 0002543862
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.306b

Рассекатель кочетова потока жидкости эжекционного типа

Изобретение относится к технике распыления жидкости. В рассекателе потока жидкости эжекционного типа для форсунки к торцевой поверхности накидной гайки осесимметрично корпусу крепится рассекатель потока жидкости. Рассекатель состоит из трех соосных коаксиально расположенных пирамидальных...
Тип: Изобретение
Номер охранного документа: 0002543863
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.306c

Комбинированный рассекатель потока жидкости

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. В комбинированном рассекателе потока жидкости к торцевой поверхности сопла со стороны жиклера осесимметрично...
Тип: Изобретение
Номер охранного документа: 0002543864
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.306d

Устройство создания газокапельной струи кочетова

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй. Устройство для создания...
Тип: Изобретение
Номер охранного документа: 0002543865
Дата охранного документа: 10.03.2015
+ добавить свой РИД