×
20.04.2015
216.013.41de

Результат интеллектуальной деятельности: СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МЕТАНОФУЛЛЕРЕНОВ В РЕАКЦИОННОЙ СМЕСИ МЕТОДОМ УФ- СПЕКТРОСКОПИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу количественного определения метанофуллеренов различных степеней замещения в реакционной смеси методом УФ-спектроскопии, заключающемуся в снятии УФ-спектров, построении калибровочных графиков на основе значений второй производной спектра, нахождении по ним уравнений линейной регрессии. При этом для приготовления образцов исследуемых соединений различных степеней замещения используются органические растворители, запись УФ-спектров производится в широком интервале концентраций, уравнения линейной регрессии для определения содержания монозамещенных метанофуллеренов h=1.23×10c+0.01×10, дизамещенных h=1.54×l0c+0.20×l0, тризамещенных h=2.31×l0c+0.30×l0, тетразамещенных h=4.00×l0c+0.32×l0, затем при определении метанофуллеренов различных степеней замещения в реакционной смеси производится отбор анализируемых проб из реакционной смеси, снятие УФ-спектров, построение графиков на основе значений второй производной спектра, подстановка соответствующего значения h в соответствующее уравнение линейной регрессии и вычисление концентрации метанофулеренов в анализируемой смеси. Использование настоящего изобретения позволяет количественно определять состав сложных реакционных смесей изомерных соединений, состоящих из двух и более 2 компонентов, в широком диапазоне концентраций без выделения их из реакционной смеси с возможностью последующего проведения процесса до заранее запланированного соотношения ингредиентов. 1 з.п. ф-лы, 5 табл., 8 пр., 2 ил.

Изобретение относится к способам количественного определения сложных реакционных смесей, в частности метанофуллеренов различных степеней замещения методом УФ-спектроскопии. Изобретение может найти применение и при изучении строения фуллеренсодержащих высокомолекулярные соединений, где на основе УФ-спектров наиболее корректно устанавливаются все возможные типы вхождения C60 в полимерную цепь (звездообразный, фуллерен в основной цепи, фуллерен на концах макромолекулы и т.д.).

Известен способ количественного нахождения промышленной смеси производства м-крезола, содержащий o-, n-изомеры крезолов, 2,4-, 2,5-, 2,6-ксиленолы и o-этилфенол (патент GB 760729 от 16.12.1953 г.). Снятие ИК- и УФ-спектров осуществляли в газовой фазе при 200°C, причем определяли в смеси только м-крезол с точностью 0,3-3,0%, а процент ошибки прибора в этом способе составляет 2%. Данная методика с достаточной точностью позволяет определять содержание лишь одного компонента в смеси, а для анализа нескольких соединений она непригодна. Кроме того, запись УФ-спектров в газовой фазе весьма затруднительна в силу того, что далеко не все органические вещества можно перевести в газовую фазу без разложения.

Наиболее близким к предлагаемому изобретению является способ определения в смеси количества цефоперазона и сульбактама, заключающийся в снятии УФ-спектров, графическом нахождении первой и второй производной спектров (Journal of Pharmaceuticul & Biomedicul Analysis, 1994, V.12, №5. p.653-657). Однако в обозначенном способе запись спектров осуществляется только в воде, а это в значительной мере сужает круг анализируемых соединений, растворяющихся исключительно в полярных и неполярных органических растворителях. По указанному методу возможно измерение концентрации всего двух соединений, которые закупаются на производстве, и авторами только готовятся растворы различных концентраций.

Целью изобретения является разработка способа количественного определения состава сложных реакционных смесей изомерных соединений, состоящих из двух и более компонентов, в широком диапазоне концентраций без выделения их из реакционной смеси с возможностью последующего проведения процесса до заранее запланированного соотношения ингредиентов.

Поставленная цель достигается тем, что определение состава сложных реакционных смесей производится в два этапа. На первом этапе снимают и обрабатывают УФ-спектры выделенных метанофуллеренов, отличающихся типом и количеством заместителей. На основании второй производной УФ-спектров строятся калибровочные графики, по которым определяются уравнения линейной регрессии. На втором этапе синтезируются метанофуллерены различных степеней замещения, снимаются их спектры и по найденным на первом этапе уравнениям линейной регрессии, соответствующим типу замещений, определяются количества замещенных метанофуллеренов.

Первый этап реализуется следующим образом. Первоначально синтезировали пять сложных смесей метанофуллеренов, различающихся количеством заместителей в ядре C60. Смеси на хроматографической колонке разделяли на составляющие в зависимости от количества заместителей в фуллерене, т.е. выделяли индивидуальные соединения. Затем готовили растворы в органических растворителях (хлорированные бензолы, хлорированные углеводороды, толуол, ацетонитрил): произвольно выбранные 5 или 6 значений концентраций в диапазоне - 10-4-10-6 моль/л (целесообразен именно обозначенный интервал, поскольку при больших чем 10-4 моль/л концентрациях высота характеристических пиков выше шкалы оптического поглощения, а при концентрациях менее 10-6 моль/л высота характеристических пиков находится на уровне ошибки измерения спектрофотометра), причем каждого из метанофуллеренов. Регистрировали УФ-спектры всех проб. Запись спектров проводили при комнатной температуре в диапазоне волн от 190 до 1100 нм, однако наиболее характеристичным является интервал 250-400 нм, ширина щели 2,0 нм, используя кварцевую кювету толщиной 1 см. Ввиду того, что спектры поглощения смеси метанофуллеренов различных степеней замещения состоят из ряда перекрывающихся полос, определение количества производных метанофуллеренов представляет трудноразрешимую задачу. Наибольшая селективность спектрофотометрического анализа достигается при переходе ко вторым производным УФ-спектров, т.е. при исследовании концентрационных зависимостей d2A/dλ2=f(λ). Тестирование различных значений Δλ выявило, что пошаговый коэффициент Δλ=40 показывает лучшую избирательность, высокую чувствительность и адекватное отношение сигнал/шум для экспериментальной работы.

По зависимостям d2A/dλ2-f(λ) (рис.1) измеряли соответствующие h1 (монозамещенные метанофуллерены), h2 (дизамещенные) и т.д. амплитуды между минимумом и максимумом d2A/dλ2 при всех концентрациях, которые далее использовали для построения калибровочного графика (рис.2). На основании калибровочного графика зависимости концентрации моно-, ди- и т.д. замещенного метанофуллерена от второй производной находили коэффициенты линейной регрессии, необходимые для расчета молярных концентраций метанофуллеренов. Параметры линейной регрессии для концентрационных зависимостей оптической плотности и d2A/dλ2 представлены в таблице 1.

Таблица 1
Параметры линейной регрессии для концентрационных зависимостей d2A/dλ2
Аддукт λ, нм Уравнение линейной R Sr×103

регрессии
моно- 359/329 h=1.23×10-4c+0.01×10-5 0.9993 1.7
ди- 347/320 h=1.54×10-4c+0.20×10-5 0.9993 3.3
три- 334/308 h=2.31×10-4c+0.30×10-5 0.9997 0.6
тетра- 317/279 h=4.00×10-4c+0.32×10-5 0.9976 1.5

Второй этап реализуется на конкретных примерах осуществления способа количественного определения метанофуллеренов в реакционной смеси в различных растворителях.

Пример 1. К раствору 0.1 г (0.14 ммоль) фуллерена C60 в 30 мл толуола добавляли 0.069 г (0.2 ммоль) CBr4, 0.033 мл (0.18 ммоль) диаллилового эфира малоновой кислоты и 0.32 мл (0.21 ммоль) диазабицикло[4.2.0]ундец-7-ена (DBU). Реакционную массу перемешивали в инертной атмосфере при комнатной температуре 1,5 ч, затем фильтровали, фильтрат промывали 5%-ным раствором HCl, сушили над MgSO4, упаривали. Остаток разделяли колоночной хроматографией на SiO2, элюент - толуол. Получили 0.040 г (~32 мас.%) монозамещенного, 0.02 г (~14%) дизамещенного, 0.015 г (~8%) тризамещенного и 0.01 г (~5%) тетразамещенного продуктов. Спектроскопический анализ реакционной смеси показал (35,2 мас.%) монозамещенного, (15,9%) дизамещенного, (8,8%) тризамещенного и (6,3%) тетразамещенного продуктов.

Пример 2. Аналогично примеру 1, только время процесса - 4 часа. После разделения колоночной хроматографией на SiO2 (толуол) получили: (12 мас.%) монозамещенного, (36%) дизамещенного, 0.015 г (24%) тризамещенного и (15%) тетразамещенного продуктов. Спектроскопический анализ реакционной смеси показал (14,3 мас.%) монозамещенного, (37,0%) дизамещенного, (25,8%) тризамещенного и (18,2%) тетразамещенного продуктов (табл.2). Для оценки полученных результатов количественного анализа смесей метанофуллеренов их сопоставили с данными ВЭЖХ (условия хроматографического анализа: хроматографическая система "Shimadzu LC-20" со спектрофотометрическим диодноматричным детектором (Япония); детектирование проводили при длине волны 280 нм, использовали колонку Exsil Silica 250×4,6 мм, 5 мкм, в качестве подвижной фазы применяли элюент состава гексан:толуол:изопропиловый спирт=97:2:1, скорость подачи подвижной фазы составляла 1 мл/мин.

Таблица 2
Сравнение методов количественного определения смеси метанофуллеренов в толуоле
Количество заместителей Пример 1 (1,5 часа) Пример 2 (4 часа)
Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.% Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.%
моно- 32,0 35,2 35,2 12,0 14,4 14,3
ди- 14,0 15,8 15,9 36,0 37,1 37,0
три- 8,0 8,8 8,8 24,0 25,8 25,8
тетра- 5,0 6,4 6,3 15,0 18,4 18,2

Пример 3. Аналогично примеру 1, но в качестве растворителя использовали хлороформ (хлорированный углеводород), время процесса - 1,5 часа. Результаты анализа реакционной смеси представлены в табл.3.

Пример 4. Аналогично примеру 1, но в качестве растворителя использовали хлороформ (хлорированный углеводород), время процесса - 4 часа. Результаты анализа реакционной смеси представлены в табл.3.

Таблица 3
Сравнение методов количественного определения смеси метанофуллеренов в хлороформе
Количество Пример 3 (1,5 часа) Пример 4 (4 часа)

заместителей Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.% Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.%
моно- 34,0 35,8 35,9 16,0 16,5 16,7
ди- 10,0 13,2 13,2 40,1 40,8 40,8
три- 8,5 9,0 9,0 26,0 27,5 27,4

Пример 5. Аналогично примеру 1, но в качестве растворителя использовали ацетонитрил, время процесса - 1,5 часа. Результаты анализа реакционной смеси представлены в табл.4.

Пример 6. Аналогично примеру 1, но в качестве растворителя использовали ацетонитрил, время процесса - 4 часа. Результаты анализа реакционной смеси представлены в табл.4.

Таблица 4
Сравнение методов количественного определения смеси метанофуллеренов в ацетонитриле
Количество заместителей Пример 5 (1,5 часа) Пример 6 (4 часа)
Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.% Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.%
моно- 32,9 35,0 34,9 15,7 17,8 17,9
ди- 13,4 14,9 14,9 39,9 41,2 41,2

Пример 7. Аналогично примеру 1, но в качестве растворителя использовали o-дихлорбензол (хлорированный бензол) (хлорированный бензол), время процесса - 1,5 часа. Результаты анализа реакционной смеси представлены в табл.5.

Пример 8. Аналогично примеру 1, но в качестве растворителя использовали o-дихлорбензол (хлорированный бензол), время процесса - 4 часа. Результаты анализа реакционной смеси представлены в табл.5.

Таблица 5
Сравнение методов количественного определения смеси метанофуллеренов в o-дихлорбензоле
Количество заместителей Пример 7 (1,5 часа) Пример 8 (4 часа)
Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.% Колоночная хроматография на SiO2, мас.% ВЭЖХ, мас.% УФ-спектроскопия, мас.%
моно- 34,3 36,5 36,7 15,9 17,0 17,1
ди- 14,1 15,1 15,2 38,6 39,2 39,1

Точность количественного определения содержания различных метанофуллеренов в смеси методом УФ-спектроскопии и ВЭЖХ хорошо коррелируют и сопоставимы между собой. Однако в случае ВЭЖХ подбор смеси элюентов для разделения метанофуллеренов весьма трудоемок и для реализации способа требуется наличие весьма дорогого оборудования.

Таким образом, количественное определение различных метанофуллеренов в сложных смесях методом УФ-спектроскопии позволяет с высокой точностью и за короткий срок устанавливать концентрацию двух и более компонентов, не прерывая течение процесса. С применением УФ-спектроскопии можно: а) изучать кинетику реакции образования метанофуллеренов на основе С60; б) доводить реакцию до запланированной концентрации нужного изомера в реакционной смеси, т.е. в целом контролировать процесс.


СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МЕТАНОФУЛЛЕРЕНОВ В РЕАКЦИОННОЙ СМЕСИ МЕТОДОМ УФ- СПЕКТРОСКОПИИ
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МЕТАНОФУЛЛЕРЕНОВ В РЕАКЦИОННОЙ СМЕСИ МЕТОДОМ УФ- СПЕКТРОСКОПИИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 68.
10.04.2014
№216.012.af6f

Способ получения жидких комплексных удобрений

Изобретение относится к сельскому хозяйству. Способ получения жидких комплексных удобрений включает нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение осадка нерастворимых примесей из полученного раствора, введение раствора солей микроэлементов в присутствии...
Тип: Изобретение
Номер охранного документа: 0002510626
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b630

Производные тетрагидроксипентаборной кислоты

Изобретение относится к полифункциональным производным тетрагидроксипентаборной кислоты НВО(ОН), реализующим функции фунгицидов, инсектицидов, регуляторов роста растений, дефолиантов и гербицидов. Химическое соединение структурной формулы (I) где М представляет собой аммоний-катион RRRNH,...
Тип: Изобретение
Номер охранного документа: 0002512364
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b970

Способ получения фторида натрия

Изобретение может быть использовано в неорганической химии. Фторид натрия может быть получен из побочного продукта производства экстракционной фосфорной кислоты - кремнефтористоводородной кислоты, содержащей диоксид кремния. Способ получения фторида натрия включает взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002513200
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0a5

Способ получения биологически активного препарата на основе сена люцерны и способ его применения

Изобретение относится к области биохимии. Изобретение включает запарку сена в водном конденсате при температуре до 100°С и массовом соотношении растительного сырья к конденсату 1:11, введение микро- и макроэлементов в виде водного раствора солей металлов с получением обогащенной суспензии сена,...
Тип: Изобретение
Номер охранного документа: 0002515066
Дата охранного документа: 10.05.2014
20.06.2014
№216.012.d47d

Санитарно-гигиеническое чистящее средство

Изобретение относится к гигиеническим чистящим средствам. Описывается санитарно-гигиеническое чистящее средство, содержащее следующие компоненты, мас.%: хлороводород (в пересчете па 36% соляную кислоту 15,5-22) 5,58-7,92, неионогенное поверхностно-активное вещество 0,5-1,6, полиэлектролит...
Тип: Изобретение
Номер охранного документа: 0002520168
Дата охранного документа: 20.06.2014
20.09.2014
№216.012.f579

Способ получения сульфата аммония

Изобретение может быть использовано в производстве азотного удобрения. Для получения сульфата аммония из подотвальной или карьерной вод отработанных месторождений железо-медно-цинковых сульфидных руд, содержащих 1-40 г/л сульфата железа (III), 2-10 г/л серной кислоты и сульфаты микроэлементов,...
Тип: Изобретение
Номер охранного документа: 0002528674
Дата охранного документа: 20.09.2014
20.10.2014
№216.012.ff0b

Способ выделения нафтеновых кислот из асидола перегретым водяным паром

Изобретение относится к нефтеперерабатывающей промышленности, в частности к производству нафтеновых кислот, и может быть использовано в их производстве. Способ выделения нафтеновых кислот из асидола перегретым водяным паром заключается в том, что асидол подается в перегоночную емкость и...
Тип: Изобретение
Номер охранного документа: 0002531147
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.07e1

Состав отбеливающий, моющий и дезинфицирующий

Изобретение относится к отбеливающим, моющим и дезинфицирующим составам. Описывается состав, содержащий, мас.%: гипохлорит натрия в расчете на активный хлор 10,0-12,0, гидроокись натрия 1,5-2,0, карбонат натрия 1,1-1,4, 2,6-дитретбутил-4-метилфенол или 2,6-дитрет-бутилфенол 0,05-0,3, вода...
Тип: Изобретение
Номер охранного документа: 0002533418
Дата охранного документа: 20.11.2014
27.02.2015
№216.013.2d1e

Способ защиты стали от сероводородной коррозии

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов в минерализованных средах, содержащих сероводород, и может быть использовано в нефтяной отрасли. Способ включает добавление в минерализованную среду, содержащую сероводород,...
Тип: Изобретение
Номер охранного документа: 0002543018
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2db8

Способ получения кремнефторида натрия

Изобретение относится к получению соединений фтора и может быть использовано в производстве кремнефторида натрия из кремнефтористоводородной кислоты. Способ включает взаимодействие кремнефтористоводородной кислоты и смеси натрийсодержащих соединений, отделение продукта, его промывку и сушку,...
Тип: Изобретение
Номер охранного документа: 0002543172
Дата охранного документа: 27.02.2015
Показаны записи 31-40 из 102.
27.06.2014
№216.012.d61c

Способ моделирования горизонтального термоэрозионного размыва мерзлых грунтов

Изобретение относится к промышленному или гражданскому строительству, в частности к определению устойчивости мерзлых грунтов, и может быть использовано при строительстве нефте- и газопроводов для установления степени устойчивости грунтов к термоэрозионному размыву. Способ моделирования...
Тип: Изобретение
Номер охранного документа: 0002520590
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ebdd

Способ прогнозирования риска возникновения переломов

Изобретение относится к медицине. Способ прогнозирования риска возникновения переломов заключается в том, что выделяют ДНК из лейкоцитов периферической венозной крови, методом полимеразной цепной реакции с флуоресцентной детекцией, генотипируют 3 полиморфных варианта -1997G>T (g.3011T>G,...
Тип: Изобретение
Номер охранного документа: 0002526189
Дата охранного документа: 20.08.2014
20.09.2014
№216.012.f579

Способ получения сульфата аммония

Изобретение может быть использовано в производстве азотного удобрения. Для получения сульфата аммония из подотвальной или карьерной вод отработанных месторождений железо-медно-цинковых сульфидных руд, содержащих 1-40 г/л сульфата железа (III), 2-10 г/л серной кислоты и сульфаты микроэлементов,...
Тип: Изобретение
Номер охранного документа: 0002528674
Дата охранного документа: 20.09.2014
20.10.2014
№216.012.ff08

Способ получения цис-вербенола

Изобретение относится к улучшенному способу получения цис-вербенола, включающему восстановление вербенона восстановителем в органической среде и выделение целевого продукта. При этом в качестве восстановителя используют диизобутилалюминийгидрид (ДИБАГ), взятый в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002531144
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff0b

Способ выделения нафтеновых кислот из асидола перегретым водяным паром

Изобретение относится к нефтеперерабатывающей промышленности, в частности к производству нафтеновых кислот, и может быть использовано в их производстве. Способ выделения нафтеновых кислот из асидола перегретым водяным паром заключается в том, что асидол подается в перегоночную емкость и...
Тип: Изобретение
Номер охранного документа: 0002531147
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.0739

Формовочная смесь для изготовления литейных форм и стержней

Изобретение относиться к литейному производству. Смесь содержит кварцевый песок 82-85 мас.%, огнеупорную глину или бентонит 5-8 мас.%, 6-8% водный раствор стиромаля 5-8 мас.%, декстрин 2-2,5 мас.% и воду 2-5 мас.%. Достигается обеспечение прочности смеси через 30-40 минут после ее...
Тип: Изобретение
Номер охранного документа: 0002533250
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e1

Состав отбеливающий, моющий и дезинфицирующий

Изобретение относится к отбеливающим, моющим и дезинфицирующим составам. Описывается состав, содержащий, мас.%: гипохлорит натрия в расчете на активный хлор 10,0-12,0, гидроокись натрия 1,5-2,0, карбонат натрия 1,1-1,4, 2,6-дитретбутил-4-метилфенол или 2,6-дитрет-бутилфенол 0,05-0,3, вода...
Тип: Изобретение
Номер охранного документа: 0002533418
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e4

Способ жидкофазного хлорирования 1,3-бутадиена

Изобретение относится к способу жидкофазного хлорирования 1,3-бутадиена с получением 3,4-дихлорбутена-1 и цис-1,4-дихлорбутена-2 и транс-1,4-дихлорбутена-2 взаимодействием 1,3-бутадиена с хлором. Способ характеризуется тем, что в качестве растворителя используют реагент - 1,3-бутадиен, а...
Тип: Изобретение
Номер охранного документа: 0002533421
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e6

Препарат, обладающий антитоксической активностью и содержащий комплексное соединение производного метилурацила с органической кислотой, и способ его получения

Изобретение относится к препарату, содержащему комплексное соединение производного метилурацила с аскорбиновой кислотой. Препарат проявляет антитоксическую активность и может использоваться в качестве антидота при отравлении нитритами и нитратами. Комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002533423
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0f75

Способ получения фосфорилированных 1,2-полибутадиенов

Изобретение относится к получению полимерных продуктов, содержащих в составе макромолекул фосфатные группы. Предложен способ получения фосфорилированных 1,2-полибутадиенов, заключающийся во взаимодействии раствора полимера с фосфорилирующим агентом, при этом в фосфорилирующий агент...
Тип: Изобретение
Номер охранного документа: 0002535374
Дата охранного документа: 10.12.2014
+ добавить свой РИД