×
20.04.2015
216.013.4149

Результат интеллектуальной деятельности: ЭЛЕКТРОМАГНИТНЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ

Вид РИД

Изобретение

№ охранного документа
0002548211
Дата охранного документа
20.04.2015
Аннотация: Изобретение относится к электромагнитным исполнительным механизмам клапанов, обеспечивающим управление работой клапана. Клапан содержит пластину, присоединенную к подвижному механизму, расположенному частично в корпусе. Линейный электромагнитный исполнительный механизм содержит первый набор постоянных магнитов, установленный у подвижного механизма. По меньшей мере один сердечник статора расположен проксимально к подвижному механизму с зазором между сердечником статора и подвижным механизмом. По меньшей мере одна обмотка статора намотана на каждый сердечник статора. Источник питания присоединен по меньшей мере к одной обмотке статора с возможностью подачи электрического тока к указанной по меньшей мере одной обмотке. Управление открытием и закрытием пластины клапана выполняется путем изменения направления электрического тока через указанную по меньшей мере одну обмотку статора. Технический результат - усиление магнитного поля, создаваемого обмоткой статора, повышение усилия привода клапана. 8 з.п. ф-лы, 5 ил.

ОБЛАСТЬ ТЕХНИКИ

Данное изобретение относится в целом к электромагнитным исполнительным механизмам клапанов, обеспечивающим управление работой клапана. Более конкретно, данное изобретение относится к электромагнитным исполнительным механизмам, обеспечивающим управление синхронизацией клапана по времени в компрессорах.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Компрессор обычно используют для повышения давления рабочей текучей среды посредством энергии, получаемой от электрического генератора или турбины, и приложения силы сжатия к рабочей текучей среде. Рабочая текучая среда может быть воздухом, хладагентом или подобной средой. Компрессоры обычно подразделяются на объемные компрессоры, динамические компрессоры или турбокомпрессоры, в зависимости от способа, который используется для сжатия.

Объемные компрессоры, как правило, используются для повышения давления рабочей текучей среды путем уменьшения объема, при этом они могут быть дополнительно подразделены на категории поршневых и ротационных компрессоров. Поршневые компрессоры обычно выполняют сжатие рабочей текучей среды посредством возвратно-поступательного движения поршня внутри цилиндра. Ротационные компрессоры, как правило, выполняют сжатие рабочей текучей среды посредством вращения барабана внутри цилиндра, имеющего эксцентриситет.

Работа крупных промышленных поршневых компрессоров часто осуществляется на постоянной скорости. Управление подобными компрессорами может выполняться при частичной нагрузке путем управления открытием и закрытием всасывающих клапанов компрессора. Путем изменения продолжительности цикла открытия и закрытия клапанов компрессора уменьшают массовый расход текучей среды, проходящей через компрессор. Соответственно, может быть улучшена эффективность работы компрессора путем изменения скорости и нагрузки в широких диапазонах. Специалистам в данной области техники будет понятно, что фазовый угол между коленчатым валом и распределительным валом может быть изменен так, чтобы обеспечить управление синхронизацией клапана по времени. Таким образом можно получить улучшенные эксплуатационные характеристики для расширения диапазона характеристик работы двигателя и режима работы, чем при использовании фиксированной синхронизации клапана по времени.

В одном примере клапан приводится в действие электромагнитным исполнительным механизмом с соленоидом. Указанный соленоид содержит по меньшей мере одну обмотку, расположенную в сердечнике и присоединенную к набору силовых электронных устройств, обеспечивающих подачу тока к обмоткам. Исполнительный механизм дополнительно содержит плунжер, присоединенный к опорной пластине, и по меньшей мере одну пружину, выполненную с возможностью направленного перемещения плунжера. Управление открытием и закрытием клапана выполняется путем пропускания тока через обмотку. Обычные электромагнитные исполнительные механизмы имеют сравнительно большой габарит. Поскольку обмотки расположены внутри корпуса исполнительного механизма, то передача тепла от обмоток к окружающей атмосфере происходит менее эффективно. Соответственно, максимально допустимая температура обмоток ограничивает максимальную силу и скорость действия исполнительного механизма. Кроме того, большие ударные силы, воздействующие на соленоид, могут повлиять на точность устройства и, как следствие, длительное время вызывать сдвиг силы удержания и скорости приведения в действие. Для уменьшения износа и сохранения точности данного устройства на приемлемых уровнях требуется выбирать высокоэффективные материалы и более крупные размеры деталей.

Имеется потребность в улучшенной управляющей системе меньшего габарита, обеспечивающей управление синхронизацией клапана по времени в таких установках, как поршневые компрессоры, для достижения гибкой работы во время эксплуатационных режимов при переходных процессах.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с одним иллюстративным вариантом выполнения настоящего изобретения приведено описание клапана, используемого в различных механизмах. Данный клапан содержит пластину, присоединенную к подвижному механизму, расположенному частично в корпусе. Электромагнитный исполнительный механизм содержит первый набор постоянных магнитов, установленных у подвижного механизма. По меньшей мере один сердечник статора расположен проксимально к подвижному механизму с зазором между сердечником статора и подвижным механизмом. По меньшей мере одна обмотка статора намотана на каждый сердечник статора. Источник питания присоединен к указанной по меньшей мере одной обмотке статора для подачи электрического тока к указанной по меньшей мере одной обмотке статора. Управление открытием и закрытием пластины клапана выполняется путем изменения направления электрического тока, проходящего через указанную по меньшей мере одну обмотку статора.

В соответствии с другим иллюстративным вариантом выполнения настоящего изобретения к источнику питания присоединен блок управления, который управляет подачей электрического тока к указанной по меньшей мере одной обмотке статора, в зависимости от состояния нагрузки указанных различных механизмов. Управление открытием и закрытием пластины клапана выполняется путем изменения направления электрического тока, проходящего через указанную по меньшей мере одну обмотку статора.

В соответствии с еще одним иллюстративным вариантом выполнения настоящего изобретения по меньшей мере один сердечник статора расположен проксимально к подвижному механизму с зазором между сердечником статора и подвижным механизмом. Корпус расположен в зазоре между сердечником статора и подвижным механизмом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие свойства, аспекты и преимущества настоящего изобретения будут более понятны из последующего подробного описания со ссылкой на сопроводительные чертежи, на которых одинаковые ссылочные позиции обозначают одинаковые детали,

Фиг.1 схематически изображает вид поршневой машины, например поршневого компрессора, содержащего электромагнитную систему приведения в действие клапана, в соответствии с иллюстративным вариантом выполнения настоящего изобретения;

Фиг.2 схематически изображает вид узла всасывающего клапана поршневой машины, содержащей электромагнитную систему приведения в действие клапана, в соответствии с иллюстративным вариантом выполнения настоящего изобретения;

Фиг.3 схематически изображает вид узла всасывающего клапана поршневой машины, содержащей электромагнитную систему приведения в действие клапана вместе с сердечником статора и обмотками, расположенными снаружи корпуса, в соответствии с иллюстративным вариантом выполнения настоящего изобретения;

Фиг.4 схематически изображает вид узла всасывающего клапана поршневой машины, содержащей электромагнитную систему приведения в действие клапана вместе с сердечником статора и обмотками, расположенными внутри корпуса, в соответствии с иллюстративным вариантом выполнения настоящего изобретения; и

Фиг.5 схематически изображает вид узла всасывающего клапана поршневой машины, содержащей электромагнитную систему приведения в действие клапана вместе с постоянными магнитами, имеющими одинаковую ориентацию, выполненными на опорной пластине, в соответствии с иллюстративным вариантом выполнения настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Как подробно рассмотрено в дальнейшем, в конкретных вариантах выполнения настоящего изобретения предлагается клапан, работающий в агрессивной окружающей среде в таком механизме, как поршневая машина, содержащая поршень, расположенный в корпусе. Следует отметить, что в некоторых вариантах выполнения данный клапан также может использоваться в областях применения в условиях высокого давления и давления ниже атмосферного. В некоторых других вариантах выполнения данный клапан также может использоваться в областях применения, связанных с предотвращением просачивания текучей среды и проникновения загрязнений. Упоминание элементов в единственном числе подразумевает также и наличие нескольких объектов, если из контекста описания не очевидно обратное. По меньшей мере один клапан присоединен к корпусу. Данный клапан содержит подвижный механизм, частично расположенный в корпусе. Подвижный механизм присоединен к пластине клапана. Линейный электромагнитный исполнительный механизм выполнен с возможностью управления пластиной клапана. Исполнительный механизм содержит набор постоянных магнитов, установленных у подвижного механизма, и по меньшей мере один сердечник статора, расположенный проксимально к подвижному механизму с зазором между сердечником статора и подвижным механизмом. В конкретных вариантах имеется блок управления, выполненный с возможностью управления подачей электрического тока к обмоткам статора в зависимости от состояния нагрузки поршневой машины. В некоторых вариантах выполнения поршневая машина является поршневым компрессором. Следует отметить, что иллюстративный электромагнитный исполнительный механизм работает в качестве «шагового двигателя». Данный исполнительный механизм обеспечивает постоянное усилие приведения в действие по всему ходу поршня, что обусловливает лучшую управляемость перемещения клапана. Кроме того, габарит магнитного исполнительного механизма по существу меньше габарита обычных конструкций.

Обратимся в целом к Фиг.1, на которой в соответствии с несколькими аспектами настоящего изобретения изображена поршневая машина 10. В показанном варианте выполнения поршневая машина является компрессором 10, содержащим поршень 12, вставленный с возможностью скольжения в цилиндр 14. Узел 16 всасывающего клапана обеспечивает открытие и закрытие всасывающего отверстия 18, расположенного у передней стороны поршня 12. Узел 16 всасывающего клапана выполнен с возможностью управления впуском текучей среды через всасывающее отверстие 18. Компрессор 20 дополнительно содержит линейный электромагнитный исполнительный механизм 20, выполненный с возможностью управления открытием и закрытием узла 16 всасывающего клапана во время такта сжатия компрессора 10 для оказания давления на текучую среду. К электромагнитному исполнительному механизму 20 для управления его работой может быть присоединен блок 22 управления. Детали электромагнитного исполнительного механизма 20 более подробно показаны и объяснены при рассмотрении последующих вариантов выполнения.

Следует отметить, что показанная конструкция поршневого компрессора является иллюстративным вариантом выполнения и не должна рассматриваться как ограничительная. Поршневой компрессор может дополнительно включать необязательные примерные аспекты в других вариантах выполнения. Поршневой компрессор 10 может быть использован в бытовых и промышленных целях. Компрессор 10 обычно приводится в действие электрическим двигателем, паровой или газовой турбиной, двигателем внутреннего сгорания или подобным устройством. Для специалистов в данной области техники будет очевидно, что компрессор 10 может использоваться для сжатия воздуха, водорода, метана, бутана или других жидкостей или газов. Также следует отметить, что электромагнитный исполнительный механизм 20, описанный в данном документе, также может использоваться в других областях применения, включая агрессивные среды в других механизмах.

Обратимся к Фиг.2, на которой показан линейный электромагнитный исполнительный механизм 20, выполненный с возможностью управления открытием и закрытием узла 16 всасывающего клапана. Узел 16 всасывающего клапана содержит подвижный механизм 24, частично расположенный в корпусе 26. В изображенном варианте выполнения подвижный механизм 24 содержит опорную пластину 28, расположенную частично в корпусе 26 с участком 30 опорной пластины 28, проходящей от корпуса 26. Участок 30 опорной пластины 28 присоединен к разгрузочному штоку 32 (штоку толкателя). Шток 32 толкателя присоединен к пластине 34 клапана, расположенной с возможностью перемещения на гнезде 36 клапана. В других вариантах выполнения конструкция пластины 34 и гнезда 36 клапана может изменяться в зависимости от области применения.

В одном варианте выполнения корпус 26 является корпусом, находящимся под высоким давлением, что содействует созданию более высокого усилия приведения в действие. В другом варианте выполнения корпус 26 может иметь более тонкие стенки и может быть выполнен с уплотнением 37, предназначенным для работы под высоким давлением и обеспечивающим поддержание заданного давления внутри корпуса.

В показанном варианте выполнения исполнительный механизм 20 содержит первый набор постоянных магнитов 38, которые расположены с чередующейся ориентацией/полярностью вокруг опорной пластины 28 внутри корпуса 26. Количество и конфигурация первого набора постоянных магнитов 38 может сильно меняться в зависимости от применения. Проксимально к опорной пластине 28 расположены сердечники 40 статора с зазором 42 между сердечниками 40 и опорной пластиной 28. Следует отметить, что в показанном варианте выполнения корпус 26 расположен в зазоре 42 между сердечниками 40 статора и пластиной 28. На каждый сердечник 40 статора намотаны обмотки 44 статора. Следует отметить, что конструкция сердечника 40 и обмоток 44 статора и их число может сильно меняться в зависимости от применения. К обмоткам 44 статора, прикрепленным к каждому сердечнику 40, присоединен источник 46 питания, обеспечивающий подачу к ним электрического тока.

Блок 22 управления присоединен к источнику 46 питания и обеспечивает управление подачей электрического тока к обмоткам 44 в зависимости от состояния нагрузки машины 10. Управление открытием и закрытием пластины 34 клапана выполняется посредством изменения направления электрического тока, проходящего через обмотки 44, В одном варианте выполнения блок 22 управления содержит электронный логический контроллер, выполненный с возможностью программирования пользователем. С учетом изложенного специалисты в данной области техники должны понимать, что может быть предусмотрено немалое количество конструкций компрессора.

В некоторых вариантах выполнения блок 22 может дополнительно содержать базу данных, алгоритм и блок анализа данных (не показан). База данных может обеспечивать хранение заданной информации о компрессоре 10. Например, в базе данных может храниться информация, относящаяся к углу поворота кривошипа, скорости работы компрессора, нагрузке на компрессор, давлению впускаемой текучей среды, давлению сжатой текучей среды, типу текучей среды или им подобным. Кроме того, база данных может содержать наборы команд, карты, таблицы поиска, переменные и т.д. Подобные карты, таблицы поиска, наборы команд являются нормоустанавливающими для обеспечения соотношения характеристик узла клапана для конкретных рабочих параметров компрессора, таких как скорость работы компрессора, нагрузка на компрессор, угол поворота кривошипа, тип текучей среды или подобных параметров. Кроме того, база данных может обеспечивать хранение фактической принятой/считанной информации, имеющей отношение к компрессору 10. Данный алгоритм может способствовать обработке считанной информации, относящейся к компрессору 10.

Блок анализа данных может содержать разнообразные типы компонентов схем, таких как микропроцессор, программируемый логический контроллер, логический модуль или им подобные. Блок анализа данных в сочетании с данным алгоритмом может использоваться для выполнения различных вычислительных операций, связанных с определением времени закрытия всасывающих клапанов, заданного периода времени управления открытием и закрытием клапанов, мощности, требуемой для приведения в действие клапана, или им подобных. Любой из вышеупомянутых параметров может быть избирательно и/или динамическим способом адаптирован или изменен для согласования во времени.

Пластина 34 клапана выполнена с обеспечением перемещения между «закрытым положением» и «открытым положением», чтобы соответственно предотвращать или разрешать прохождение текучей среды. В показанном варианте выполнения пластина 34 клапана находится в закрытом положении, то есть данная пластина находится в контакте с гнездом 36 клапана. Когда пластина 34 находится в открытом положении, она не контактирует с гнездом 36. Пластина 34 клапана открывается посредством приведения в движение вниз подвижного механизма 24 напротив гнезда 36 клапана. Управление перемещением механизма 24 выполняется путем управления подачей электрического тока через обмотки 44 статора. При отключении подачи электрического тока к обмоткам 44 пластина 34 клапана перемещается в закрытое положение. При подаче электрического тока к обмоткам 44 сердечник 40 статора вместе с первым набором постоянных магнитов 38 создает электромагнитную силу, заставляющую пластину 28 притягиваться вниз. В результате разгрузочный шток 32, присоединенный к опорной пластине 28, также проталкивается вниз к гнезду 36 клапана. В результате данного перемещения подвижного механизма 24 вниз (показанного стрелкой 50) пластина 34 отталкивается от гнезда 36 и открывается. До тех пор, пока обеспечивается подача электрического тока к обмоткам 44, электромагнитная сила, создаваемая исполнительным механизмом 20, поджимает подвижный механизм 24 к гнезду 36, поддерживая, таким образом, пластину 34 в открытом состоянии в противодействие силе, которая создается обратным потоком текучей среды, проходящей через данный клапан.

В конкретных вариантах выполнения управление степенью открытия и закрытия пластины 34 клапана выполняется путем управления направлением подачи электрического тока через обмотки 44 статора. В одном варианте выполнения исполнительный механизм используется для удержания пластины 34 в открытом положении в течение заранее заданного периода времени. Чем дольше пластина 34 удерживается в открытом положении во время такта сжатия, тем больше газа проталкивается обратно во всасывающую магистраль и тем меньше газа подается к выпускной магистрали компрессора. Управление подаваемого компрессором 10 объемом газа может выполняться путем управления временем открытия пластины 34.

В проиллюстрированном варианте выполнения между подвижным механизмом 24 и корпусом 26 расположен смещающий компонент 39. Смещающий компонент 39 выполнен для приведения в действие исполнительного механизма 20 и смещения пластины 34 клапана к заданному положению (может быть открытое или закрытое положение) при прерывании или отключении подачи питания к электромагнитному исполнительному механизму 20. В одном варианте выполнения такое решение обеспечивает расположение пластины 34 клапана в неоткрытом положении, когда отключается подача питания к исполнительному механизму 20. В проиллюстрированном варианте выполнения смещающий компонент 39 содержит смещающую пружину. В других вариантах выполнения также предусматриваются другие подходящие смещающие компоненты.

В некоторых вариантах выполнения электромагнитный исполнительный механизм 20 клапана используется для управления закрытием узла 16 всасывающего клапана во время такта сжатия компрессора 10 при режимах отсутствия нагрузки или при наличии частичной рабочей нагрузки. Несмотря на то что в изображенном варианте выполнения проиллюстрирован один узел 16 всасывающего клапана, данный компрессор может содержать большое количество всасывающих клапанов, выполненных с возможностью управления впуском текучей среды в компрессор 10. Для каждого клапана может быть предусмотрен электромагнитный исполнительный механизм для раздельного управления каждым клапаном и обеспечения гибкости в работе. Например, в зависимости от режима нагрузки компрессора может потребоваться изменить время закрытия одного набора клапанов относительно времени закрытия другого набора клапанов во время такта сжатия компрессора. Следует отметить, что иллюстративная система приведения в действие клапана может использоваться для других клапанов, работающих в агрессивных средах в других механизмах.

Как было изложено ранее, исполнительный механизм 20 обеспечивает постоянную приводящую в действие силу во время хода поршня, что улучшает возможность управления данного перемещения. Внутри компрессора 10 отсутствуют электрические компоненты, так как корпус 26 исполнительного механизма 20 расположен между сердечником 40 статора и опорной пластиной 28, что облегчает выполнение правил техники безопасности. Габарит конструкции исполнительного механизма существенно уменьшен, поэтому на общие рабочие характеристики исполнительного механизма 20 не оказывается неблагоприятное воздействие. Кроме того, ударная нагрузка между подвижным механизмом 24 и сердечником 40 статора ограничена, поскольку сердечник 40 не входит в контакт с подвижным механизмом 24.

Обратимся к фиг.3, на которой показан линейный электромагнитный исполнительный механизм 20, обеспечивающий управление открытием и закрытием узла 16 всасывающего клапана. В показанном варианте выполнения конструкция исполнительного механизма 20 аналогична конструкции варианта выполнения, проиллюстрированного на фиг.2, за исключением того, что смещающий компонент 52 расположен внутри и снаружи корпуса 26. Смещающий компонент 52 содержит второй набор постоянных магнитов 54, расположенных снаружи корпуса 26, и третий набор постоянных магнитов 56, расположенных внутри корпуса 26 вокруг опорной пластины 28. Аналогично первому варианту выполнения смещающий компонент 52 выполнен с возможностью приведения в действие исполнительного механизма 20 и смещения пластины 34 клапана к заданному положению, когда прерывается или выключается подача энергии к электромагнитному исполнительному механизму 20. В других вариантах выполнения также предусматриваются другие подходящие смещающие компоненты.

Исполнительный механизм 20 может быть эффективно перемещен вверх или вниз посредством направления тока, проходящего через обмотки 44 статора. Сила приведения в действие является постоянной во время хода поршня. Обмотки 44 могут быть отформованы с использованием формовочного материала так, чтобы улучшить передачу тепла от обмоток 44 к окружающей среде. Обмотки 44 не входят в контакт с газообразной средой, что обусловливает предотвращение искрения внутри исполнительного механизма.

Обратимся к фиг.4, на которой показан линейный электромагнитный исполнительный механизм 20, обеспечивающий управление открытием и закрытием узла 16 всасывающего клапана. Следует отметить, что в показанном варианте выполнения конструкция исполнительного механизма 20 аналогична конструкции варианта выполнения, проиллюстрированного на фиг.3, за исключением того, что сердечник 40 и обмотки 44 статора расположены внутри корпуса 26. Расположение обмоток 44 и сердечника 40 статора внутри корпуса 26 уменьшает зазор между сердечником 40 и опорной пластиной 28. Такое решение способствует созданию исполнительным механизмом 20 более высоких приводящих в действие усилий. В данном случае отсутствует прямое воздействие между сердечником 40 и опорными пластинами 28, что обусловливает пониженный износ и меньшее отрицательное влияние на точность работы устройства.

Обратимся к фиг.5, на которой показан линейный электромагнитный исполнительный механизм 20, обеспечивающий управление открытием и закрытием узла 16 всасывающего клапана. Следует отметить, что в показанном варианте выполнения конструкция исполнительного механизма 20 аналогична конструкции варианта выполнения, проиллюстрированного на фиг.2, за исключением того, что первый набор постоянных магнитов 38, которые имеют такие же чередующиеся ориентации/полярности, расположен вокруг опорной пластины 28 внутри корпуса 26. Между постоянными магнитами 38, имеющими те же чередующиеся ориентации/полярности, расположено большое количество железных зубцов 58. Исполнительный механизм 20 рассматриваемых вариантов выполнения со ссылкой на Фиг.1-5 обеспечивает существенно более высокое приводящее в действие усилие в начале хода поршня и постоянное приводящее в действие усилие для остального хода поршня.

Несмотря на то что были проиллюстрированы и описаны лишь конкретные свойства настоящего изобретения, специалистам в данной области техники будут очевидны многие модификации и изменения. Поэтому следует понимать, что прилагаемая формула изобретения подразумевает распространение на все подобные модификации и изменения, как подпадающие под сущность настоящего изобретения.

Перечень элементов

Поршневая машина 10
Поршень 12
Цилиндр 14
Узел всасывающего клапана 16
Всасывающее отверстие 18
Линейный электромагнитный исполнительный механизм 20
Блок управления 22
Подвижный механизм 24
Корпус 26
Опорная пластина 28
Участок 30
Шток разгружателя 32
Пластина клапана 34
Гнездо клапана 36
Уплотнение, предназначенное для работы под высоким давлением 37
Первый набор постоянных магнитов 38
Смещающий компонент 39
Сердечники статора 40
Зазор 42
Обмотки статора 44
Источник питания 46
Перемещение вниз 50
Смещающий компонент 52
Второй набор постоянных магнитов 54
Третий набор постоянных магнитов 56
Железные зубцы 58


ЭЛЕКТРОМАГНИТНЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ
ЭЛЕКТРОМАГНИТНЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ
ЭЛЕКТРОМАГНИТНЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ
ЭЛЕКТРОМАГНИТНЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ
ЭЛЕКТРОМАГНИТНЫЙ ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 353.
27.05.2015
№216.013.4de4

Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации

Изобретение относится к системам с тепловым циклом для рекуперации отработанного тепла. Система рекуперации отработанного тепла включает систему (12) цикла Брайтона (СЦБ). СЦБ (12) содержит нагреватель (16), предназначенный для циркуляции пара диоксида углерода при теплообмене с горячей текучей...
Тип: Изобретение
Номер охранного документа: 0002551458
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa3

Охладитель синтез-газа и способ его сборки

Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов. Охладитель синтез-газа также включает кольцевой корпус (202),...
Тип: Изобретение
Номер охранного документа: 0002551908
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5273

Опорная стойка для диафрагмы турбины, опорная стоечная конструкция для диафрагмы турбины и паровая турбина

Опорная стойка (430) для диафрагмы паровой турбины содержит основную вертикальную часть (435) с утолщением (447), которое проходит от указанной части (435) по существу перпендикулярно ей. Утолщение содержит первое утолщение, проходящее от верхнего конца основной вертикальной части (435), и...
Тип: Изобретение
Номер охранного документа: 0002552628
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5475

Способ и установка для сварки лазерным лучом по меньшей мере двух компонентов

Изобретение относится к способу и установке для сварки лазерным лучом по меньшей мере двух компонентов (102, 104) из суперсплавов. В способе обеспечивают по существу одновременное создание основного сварного шва (110) с использованием первого присадочного металла, расположенного между...
Тип: Изобретение
Номер охранного документа: 0002553142
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5624

Паровая турбина низкого давления

Паровая турбина (105) низкого давления имеет выхлопной патрубок (115). Внутренний корпус (125) опирается непосредственно на балочную стенку (131) фундамента (130) с помощью несущих кронштейнов (180). Благодаря этому исключено влияние перепадов давления в выхлопном патрубке (115), а влияние...
Тип: Изобретение
Номер охранного документа: 0002553582
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56f4

Инструмент в устройстве электрохимической обработки

Изобретение относится к системе для электрохимической обработки заготовки, содержащей анод. Система содержит инструмент, который содержит катод, резервуар, выполненный с возможностью погружения инструмента и заготовки для обработки, систему управления, выполненную с возможностью постепенного...
Тип: Изобретение
Номер охранного документа: 0002553790
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5723

Выпускное устройство для осевой паровой турбины

Выпускное устройство (100) осевой паровой турбины содержит внутренний корпус (116) турбины и конденсатор (140) турбины, установленный ниже выпускного кожуха (121). Выпускной кожух (121) содержит верхний выпускной кожух (122) и нижний выпускной кожух (123) и обеспечивает двойной выпускной тракт...
Тип: Изобретение
Номер охранного документа: 0002553837
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.585c

Паротурбинная энергетическая установка (варианты)

Паротурбинная энергетическая установка содержит турбину (104) высокого давления, турбину (106) среднего давления и три турбины низкого давления. Три турбины низкого давления содержат две турбины (108) низкого давления, образующие двухпоточную турбину (108) низкого давления, и однопоточную...
Тип: Изобретение
Номер охранного документа: 0002554161
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5865

Выпускной патрубок для паровой турбины и способ снижения выпускных потерь в выпускном патрубке паровой турбины

Выпускной патрубок (110) паровой турбины (10) содержит нижний выпускной патрубок (105), направляющую (24) для пара, отверстие (26) конденсатора, пластину (200) выпускного патрубка и внутренний канал (215). Нижний выпускной патрубок (105) присоединен к паровой турбине (10). Направляющая (24) для...
Тип: Изобретение
Номер охранного документа: 0002554170
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bfc

Устройство для регулирования суммарной осевой нагрузки паровой турбины (варианты) и паровая турбина

Изобретение относится к энергетике. Устройство для регулирования суммарной осевой нагрузки паровой турбины, содержащей ступенчатый вращающийся вал, причём первый канал для протечки проточно соединяет первую ступень секции турбины с уплотнительным приспособлением около ступенчатого участка на...
Тип: Изобретение
Номер охранного документа: 0002555089
Дата охранного документа: 10.07.2015
Показаны записи 71-80 из 296.
10.04.2015
№216.013.3d18

Турбинная лопатка (варианты) и ротор

Турбинная лопатка включает удлиненную лопасть, основание и бандажный элемент. Основание расположено на ближнем к месту крепления конце удлиненной лопасти и содержит плоский элемент, выступ и элемент для пазового соединения. Плоский элемент проходит перпендикулярно продольной оси удлиненной...
Тип: Изобретение
Номер охранного документа: 0002547128
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.414a

Паровая турбина и устройство для запуска паровой турбины

Предложены паровая турбина и устройство для ее запуска. Паровая турбина (100) содержит группу ступеней, паровой тракт (108), впускное отверстие (104), выпускное отверстие (106), входное отверстие (110), выходное отверстие (112). Паровой тракт (108) проходит через указанную группу ступеней...
Тип: Изобретение
Номер охранного документа: 0002548212
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4282

Испаритель прямого действия, установка для регенерации энергии и способ регенерации энергии

Изобретение относится к энергетике. Испаритель прямого действия для использования в установке для регенерации энергии с циклом Ренкина на органическом носителе содержит корпус с впускным отверстием для газа от теплового источника и выпускным отверстием для газа от теплового источника, причем...
Тип: Изобретение
Номер охранного документа: 0002548524
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.479b

Способ намагничивания ротора электромашины, намагничивающая система для ротора электромашины и способ изготовления ротора электромашины

Изобретение относится к электротехнике, к электрическим машинам. Технический результат состоит в упрощении намагничивания. Способ включает сборку массива ненамагниченных анизотропных сегментов постоянного магнита вокруг шпинделя ротора, заключенного в металлическое кольцо. Затем определяют...
Тип: Изобретение
Номер охранного документа: 0002549835
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4da2

Контроль осевой вибрации для обнаружения несоосности валов в турбомашинных установках

Изобретение относится к технике измерения и контроля осевых вибраций. Система для определения несоосности валов в турбомашинной установке (10), имеющей множество компонентов (12, 14, 16) с последовательно соединенными вращающимися валами (24, 26, 28), содержит датчик (30A, 30B и 30C),...
Тип: Изобретение
Номер охранного документа: 0002551388
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4de4

Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации

Изобретение относится к системам с тепловым циклом для рекуперации отработанного тепла. Система рекуперации отработанного тепла включает систему (12) цикла Брайтона (СЦБ). СЦБ (12) содержит нагреватель (16), предназначенный для циркуляции пара диоксида углерода при теплообмене с горячей текучей...
Тип: Изобретение
Номер охранного документа: 0002551458
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa3

Охладитель синтез-газа и способ его сборки

Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов. Охладитель синтез-газа также включает кольцевой корпус (202),...
Тип: Изобретение
Номер охранного документа: 0002551908
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5273

Опорная стойка для диафрагмы турбины, опорная стоечная конструкция для диафрагмы турбины и паровая турбина

Опорная стойка (430) для диафрагмы паровой турбины содержит основную вертикальную часть (435) с утолщением (447), которое проходит от указанной части (435) по существу перпендикулярно ей. Утолщение содержит первое утолщение, проходящее от верхнего конца основной вертикальной части (435), и...
Тип: Изобретение
Номер охранного документа: 0002552628
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5475

Способ и установка для сварки лазерным лучом по меньшей мере двух компонентов

Изобретение относится к способу и установке для сварки лазерным лучом по меньшей мере двух компонентов (102, 104) из суперсплавов. В способе обеспечивают по существу одновременное создание основного сварного шва (110) с использованием первого присадочного металла, расположенного между...
Тип: Изобретение
Номер охранного документа: 0002553142
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5624

Паровая турбина низкого давления

Паровая турбина (105) низкого давления имеет выхлопной патрубок (115). Внутренний корпус (125) опирается непосредственно на балочную стенку (131) фундамента (130) с помощью несущих кронштейнов (180). Благодаря этому исключено влияние перепадов давления в выхлопном патрубке (115), а влияние...
Тип: Изобретение
Номер охранного документа: 0002553582
Дата охранного документа: 20.06.2015
+ добавить свой РИД