×
10.04.2015
216.013.4070

Результат интеллектуальной деятельности: СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке металлов давлением и может быть использовано для получения интенсивной пластической деформации (ИПД) заготовки. Способ включает осадку и последующее кручение заготовки с обеспечением деформации сдвига. Деформирование заготовки проводят на бойках Бриджмена с приложением удельного давления 3-6 ГПа. Затем производят вращение подвижного бойка относительно своей оси со скоростью 0,02-1,5 об/мин. В процессе вращения бойка осуществляют циклическое изменение удельного давления на 10-20% от текущего значения с частотой 0,1-1,5 от установленной скорости вращения бойка. Цикличное приложение нагрузки при ИПД кручением обеспечивает однородную микроструктуру и повышает прочность и микротвердость материала заготовки. 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации (ИПД) с целью однородного измельчения микроструктуры металлов и повышения их микротвердости и прочности.

В последние 10-15 лет методы обработки, реализующие интенсивные пластические деформации, т.е. деформации в условиях высоких приложенных давлений, получили значительное развитие для получения ультрамелкозернистых (наноструктурированных) металлов и сплавов. Такие ультрамелкозернистые материалы проявляют повышенные механические и физические свойства, которые весьма привлекательны для многих инновационных применений [1]. Среди различных методов ИПД особое внимание привлекает интенсивная пластическая деформация кручением или кручение под высоким давлением. Это метод, осуществляемый в специальном устройстве-камере Бриджмена, широко используется для получения ультрамелкозернистых и наноструктурных материалов в заготовках в форме дисков.

Известен способ обработки интенсивной пластической деформацией, включающий деформирование заготовки, помещенной в замкнутый объем матрицы, осадку и кручение в условиях квазигидростатического давления [2].

Недостатком известного способа является сложность и трудоемкость процесса деформации, возможность неравномерного распределения деформаций и неоднородность микроструктуры по объему заготовки.

Известен способ обработки аморфных магнитных материалов интенсивной пластической деформацией с целью их нанокристаллизации [3], согласно которому интенсивную пластическую деформацию проводят кручением под квазигидростатическим давлением при криогенной температуре. Деформацию проводят в камере Бриджмена при 1-10 оборотах подвижной наковальни.

Недостатком данного способа являются ограниченные функциональные возможности в связи с использованием его исключительно для обработки магнитно-мягких аморфных сплавов.

Известен способ обработки металлов, предназначенный для наностуктурирования металлов с помощью интенсивной пластической деформации, который является наиболее близким по решаемой задаче и принят в качестве прототипа. Общим у известного устройства и заявленного изобретения являются осадка и кручение заготовки. В прототипе величину усилия осадки и крутящего момента рассчитывают по математическим формулам в зависимости от диаметра заготовки, предельного напряжения сдвига материала заготовки и коэффициента трения на поверхности контакта пуансон-заготовка [4].

Известный способ позволяет эффективно измельчать микроструктуру, но обычно не обеспечивает однородную микроструктуру по всей площади заготовки, в частности в центральной части образца, а значит и требуемые параметры физико-механических свойств материала.

Задача, на решение которой направлено изобретение, заключается в проведении интенсивной пластической деформации кручением с обеспечением однородного измельчения структуры металла по всему объему заготовки.

Технический результат, достигаемый новым способом обработки металлов, заключается в повышении микротвердости и прочности материала заготовки, а также их равномерности по площади заготовки.

Поставленная задача решается способом интенсивной пластической деформации, включающим осадку и последующее кручение заготовки с получением деформации сдвига, в котором, в отличие от прототипа, деформацию проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа и последующим вращением подвижного бойка относительно своей оси со скоростью 0,02-1,5 об/мин, причем в процессе вращения бойка осуществляют циклическое изменение удельного давления на 10-20% от текущего значения с частотой 0,1-1,5 от установленной скорости вращения бойка.

Кроме того, поставленная задача достигается тем, что скорость вращения бойка в процессе деформации изменяют циклически.

Помимо этого, поставленная задача достигается тем, что в процессе деформации изменяют направление вращения бойка с шагом 0,1-1,5 оборота.

Вместе с тем, поставленная задача достигается тем, что процесс деформации ведут при температуре -100°C÷+450°C.

Технический результат достигается тем, что циклирование нагрузки в ходе ИПД кручением ведет к изменению концентрации вакансий в материале заготовки, которое в свою очередь влияет на скорость «переползания» дислокации и посредством этого на механизмы деформации и механизмы формирования ультрамелкозернистой структуры, обеспечивая ей однородность. Циклирование нагрузки при ИПД кручением подобно повороту образца в ходе равноканального углового прессования, что ведет к смене систем скольжения в ходе обработки и благодаря этому обеспечивает более однородную микроструктуру материала и, следовательно, повышение физико-механических свойств, таких как предел прочности и микротвердость.

Циклирование скорости кручения заготовки (скорости вращения бойка) способствует дополнительному повышению однородности микроструктуры материала заготовки.

Сущность изобретения поясняется Фиг.1,2, 3, 4 и 5.

На Фиг.1 приведена принципиальная схема обработки заготовки способом ИПД кручением под давлением Р.

На Фиг.2 приведена фотография микроструктуры исходного титанового сплава ВТ-6 до обработки по предложенному способу (световой микроскоп, увеличение Х500).

На Фиг.3 приведена фотография микроструктуры титанового сплава ВТ-6 после обработки по предложенному способу (просвечивающий электронный микроскоп, увеличение Х50000).

На Фиг.4 приведены значения микротвердости вдоль диаметра заготовки титанового сплава ВТ-6 после обработки кручением под давлением кручения (среднее значение 360 HV, разброс значений ±23 HV).

На Фиг.5 приведены значения микротвердости вдоль диаметра заготовки титанового сплава ВТ-6 после обработки кручением с циклированием давления (среднее значение 410 HV, разброс значений ±12 HV).

Сущность заявляемого изобретения поясняется схемой кручения (Фиг.1), которая содержит металлическую заготовку 1, подвижный боек Бриджмена 2 и неподвижный боек Бриджмена 3.

Способ осуществляют следующим образом.

Заготовку 1 помещают между подвижным 2 и неподвижным 3 бойками Бриджмена (Фиг.1). Бойки сжимают с удельным усилием 3-6 ГПа, после чего подвижный боек 2 начинают вращать относительно своей оси со скоростью 0,02-1,5 об/мин. При этом силы поверхностного трения заставляют заготовку деформироваться сдвигом, обеспечивая тем самым измельчение структуры. В процессе вращения подвижного бойка удельное давление сжатия циклически меняют на 10-20% от текущего значения с частотой 0,1-1,5 от установленной скорости вращения бойка. Согласно способу скорость вращения бойка можно изменять циклически, а также менять направление вращения бойка с шагом 0,1-1,5 оборота. Процесс деформации можно вести при температуре -100°C÷+450°C, изменяя ее в процессе обработки в указанных пределах. Изменение температуры способствует лучшей пластичности конечной заготовки.

Заявленное изобретение было апробировано в лабораторных условиях Санкт-Петербургского государственного университета. В результате экспериментов было подтверждено достижение указанного технического результата: повышение микротвердости и прочности материала заготовки. Ниже приведен пример конкретной апробации заявленного способа.

Пример конкретного выполнения.

Из горячекатаного прутка титанового сплава ВТ-6 диаметром 20 мм были вырезаны заготовки толщиной 2 мм на электроискровой установке. Каждая заготовка помещалась между бойками в канавку, затем подвижный и неподвижный бойки сжимались с удельным усилием 6 ГПа. Подвижный боек начинали вращать со скоростью 0,2 об/мин - 10 оборотов. В процессе вращения подвижного бойка удельное давление сжатия меняли циклически с 6 ГПа до 5 ГПа при каждом повороте на 360°.

После обработки получили заготовки толщиной 1 мм, из которых вырезали образцы для механических испытаний на растяжение с размером базы 4 мм и длиной 12 мм. Каждый образец полировался на алмазных пастах для исключения рисок - концентраторов разрушения.

Механическое испытание всех образцов производились на стандартной разрывной машине при комнатной температуре со скоростью деформации 10-4 с-1 до их полного разрушения.

Кроме того, образцы исследовали на просвечивающем электронном микроскопе (ПЭМ). Для этого из полученных образцов изготавливали тонкие фольги путем электролитического полирования, затем ее помещали в колонну микроскопа, где и наблюдали микроструктуру сплава в исходном и наноструктурном состоянии. На Фиг.2 и 3 показана структура исходного и наноструктурного сплава ВТ-6. Как видно на Фиг.2 и 3 после предлагаемой обработки структура сильно измельчилась.

На Фиг.4 и 5 приведены значения микротвердости вдоль диаметра заготовки из сплава ВТ-6 после кручения и после кручения с циклическим усилием. Добавление цикличности к прилагаемому усилию дало прирост микротвердости на 14%, при этом разброс значений уменьшился.

Результаты испытаний образцов представлены в таблице, в которой приведены сравнительные характеристики титанового сплава ВТ-6 до и после его обработки по предложенному способу. Как следует из результатов испытаний, обработанный по предложенному способу материал имеет более высокую прочность и упругость.

Таким образом, предложенное изобретение позволяет получить более однородную микроструктуру материала по всему объему заготовки и существенно повысить его микротвердость и прочность.

Изобретение может быть применено для обработки материалов с целью повышения их физических и механических свойств за счет создания ультрамелкозернистых структур для их инновационных применений в области энергетики, работе при низких температурах, использовании в аэрокосмических установках, спорте и биомедицине.

Таблица
Результаты испытания заготовок материала до и после обработки ИПД кручением при циклическом давлении
Состояние материала Предел прочности σв, МПа Пластичность δ, %
Исходное 960 20
Наноструктурное 1760 5

Таким образом, предложенное изобретение позволяет получить более однородную микроструктуру материала по всей площади заготовки и существенно повысить его микротвердость и прочность.

Заявленное изобретение может быть применено для создания принципиально нового поколения функциональных и конструкционных материалов. Создание однородной наноструктуры в металлах и сплавах открывает путь для получения новых, неожиданных и необычных свойств конструкционных материалов, чрезвычайно привлекательных для многих инновационных применений в разных сферах и областях: энергетики, работе при низких температурах, использовании в аэрокосмических установках, спорте и биомедицине. В частности, повышенная прочность и износостойкость ультрамелкозернистых металлов с однородным распределением структуры при сохранении достаточной пластичности дает возможность существенно увеличить надежность и долговечность созданных с их использованием механизмов и конструкций, а также уменьшить расход материала на их изготовление.

Литература

1. Р.З. Валиев, Александров И.В. Объемные наноструктурные металлические материалы. Получение, структура и свойства. М.: Академкнига, 2007. - 398 с.

2. Головин Ю.И. Введение в нанотехнику. М.: Машиностроение, 2007. - 240 с.

3. Патент РФ №2391414, МПК C21D 6/04, опубл. 10.06.2010 г.

4. Патент РФ №2382687, МПК C21J 6/04, опубл. 27.02.2010 г. (прототип).


СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ
Источник поступления информации: Роспатент

Показаны записи 51-53 из 53.
20.01.2018
№218.016.1b51

Способ изготовления заготовки из титанового сплава для деталей газотурбинного двигателя

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей газотурбинного двигателя. Заготовку из титанового сплава подвергают равноканальному угловому прессованию, после чего пластически деформируют экструдированием. Равноканальное угловое прессование...
Тип: Изобретение
Номер охранного документа: 0002635989
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1d37

Способ деформационно-термической обработки аустенитных коррозионностойких сталей

Изобретение относится к области металлургии, а именно к термомеханической обработке аустенитных коррозионно-стойких сталей. Для повышения прочностных свойств стали при температурах деформации ниже температуры рекристаллизации с сохранением однородной аустенитной структуры предварительно...
Тип: Изобретение
Номер охранного документа: 0002640702
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.1f58

Способ получения заготовки из наноструктурного сплава ti49,3ni50,7 с эффектом памяти формы

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы...
Тип: Изобретение
Номер охранного документа: 0002641207
Дата охранного документа: 16.01.2018
Показаны записи 61-63 из 63.
23.04.2019
№219.017.369c

Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы

Изобретение относится к области деформационно-термической обработки сплавов титан-никель с эффектом памяти формы и может быть использовано в машиностроении, медицине и технике. Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы включает...
Тип: Изобретение
Номер охранного документа: 0002685622
Дата охранного документа: 22.04.2019
18.05.2019
№219.017.5906

Способ деформационной обработки металлической заготовки в виде прутка

Изобретение относится к деформационной обработке металлов с изменением их физико-механических свойств, в частности к деформационной обработке длинномерных заготовок в виде прутка. Способ включает подачу заготовки в рабочий канал, образованный между вращающимся диском и неподвижной...
Тип: Изобретение
Номер охранного документа: 0002417857
Дата охранного документа: 10.05.2011
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
+ добавить свой РИД