×
10.04.2015
216.013.4017

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002547895
Дата охранного документа
10.04.2015
Аннотация: Изобретение относится к космической технике. Способ определения альбедо земной поверхности включает развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной поверхности. Дополнительно измеряют высоту орбиты КА, по которой определяют угол полураствора видимого с КА диска Земли Q. Выбирают интервал времени, продолжительность которого равна длительности разворота СБ на 180° вокруг оси, параллельной плоскости СБ, и в течение которого угол между радиус-вектором КА и направлением на Солнце ≤Q. К моменту начала упомянутого интервала времени разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в зенит и измеряют значение тока от СБ I. Разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в надир и измеряют значение тока от СБ I. Фиксируют диапазон значений высоты Солнца над плоскостью местного горизонта в упомянутом интервале времени. Значение альбедо определяют по формуле. Изобретение позволяет определять альбедо для различных фиксируемых диапазонов изменения угла падения солнечной радиации на отражающую поверхность за время разворота СБ на 180°. 1 ил.
Основные результаты: Способ определения альбедо земной поверхности, включающий развороты солнечной батареи космического аппарата, движущегося по околокруговой орбите вокруг Земли, измерение значений тока от солнечной батареи и определение по ним значения альбедо земной поверхности, отличающийся тем, что дополнительно измеряют высоту орбиты космического аппарата, по которой определяют угол полураствора видимого с космического аппарата диска Земли, выбирают интервал времени, продолжительность которого равна длительности разворота солнечной батареи на 180° вокруг оси, параллельной плоскости солнечной батареи, и в течение которого угол между радиус-вектором космического аппарата и направлением на Солнце ≤ угла полураствора видимого с космического аппарата диска Земли, к моменту начала упомянутого интервала времени разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в зенит и измеряют значение тока от солнечной батареи, после чего разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в надир и измеряют значение тока от солнечной батареи, фиксируют диапазон значений высоты Солнца над плоскостью местного горизонта в упомянутом интервале времени, и значение альбедо земной поверхности для фиксируемого диапазона значений высоты Солнца определяют по формуле , где I - значения тока от солнечной батареи, измеренные при совмещении нормали к рабочей поверхности солнечной батареи с направлением в зенит и надир, соответственно; h - значения высоты Солнца над плоскостью местного горизонта в моменты измерения токов I; K - коэффициент выходной мощности тыльной поверхности солнечной батареи относительно выходной мощности рабочей поверхности солнечной батареи.

Изобретение относится к области космической техники и может быть использовано для определения и контроля интегральных параметров лучистого теплообмена планеты, вокруг которой обращается космический аппарат (КА).

Солнечное изучение, поступающее к Земле, отражается от ее поверхности, от облаков, рассеивается атмосферой. Альбедо поверхности Земли - это отношение потока излучения, отраженного этой поверхностью в окружающее пространство, к потоку, упавшему на нее.

При теоретическом расчете значение альбедо Земли может приниматься так, что оптические характеристики Земли такие же, как и у однородной диффузно отражающей поверхности с коэффициентом отражения 0,34 (Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983).

Определение альбедо Земли может быть выполнено по метеорологическим данным и данным о сезонном и географическом распределении полной облачности и отражательных способностях различных видов облаков и подстилающей поверхности, получаемая при этом средняя расчетная величина альбедо Земли оценивается равной 0,35 (Кондратьев К.Я. Актинометрия. - М.: Гидрометеоиздат, 1965; Крошкин М.Г. Физико-технические основы космических исследований. - М.: Машиностроение, 1969).

Как видно из изложенного, вопрос о точном определении альбедо Земли далек от окончательного решения. Используемые в расчетах модели имеют ограниченную точность, что не позволяет получить абсолютно достоверные данные о текущем значении альбедо Земли и его географическом распределении.

Известен способ определения альбедо земной поверхности (Патент РФ №2353920 по заявке №2007129599/28 от 02.08.2007, МПК: G01N 21/55 - прототип), согласно которому определяют моменты нахождения Солнца в зенитной области над снабженным одной или несколькими солнечными батареями (СБ) КА, движущимся по околокруговой орбите вокруг Земли, на двух последовательных витках орбиты, и в момент нахождения Солнца в зенитной области над КА при прохождении подсолнечной точки первого витка орбиты разворачивают СБ в рабочее положение, соответствующее совмещению нормали к их рабочей поверхности с направлением на Солнце, а в момент нахождения Солнца в зенитной области над КА при прохождении подсолнечной точки следующего витка орбиты разворачивают СБ в положение, соответствующее совмещению нормали к их рабочей поверхности с противосолнечным направлением, измеряют значения тока от СБ в каждом из описанных положений СБ и определяют значение альбедо Земли A по формуле ,

где I1,2 - значения тока от СБ, измеренные в моменты прохождения подсолнечных точек, соответственно, на витке орбиты при совмещении нормали к рабочей поверхности панелей СБ с направлением на Солнце и на последующем витке орбиты при совмещении нормали к рабочей поверхности панелей СБ с противосолнечным направлением;

K - коэффициент выходной мощности тыльной поверхности панелей СБ относительно выходной мощности их рабочей поверхности.

В задаче измерения альбедо земной поверхности существенное значение имеет зависимость альбедо от угла падения солнечной радиации на отражающую поверхность, который характеризуется углом высоты Солнца - углом между направлением на Солнце и плоскостью местного горизонта. Способ-прототип позволяет определять значение альбедо земной поверхности только для случая освещения подстилающей земной поверхности солнечным излучением под прямым углом (по нормали к подстилающей поверхности) и не позволяет определять альбедо земной поверхности при разных углах падения солнечной радиации на отражающую поверхность.

Задачей, на решение которой направлено настоящее изобретение, является определение альбедо земной поверхности для различных углов падения солнечной радиации на отражающую поверхность.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в определении по измеренным значениям тока от СБ орбитального КА значений альбедо земной поверхности для различных углов падения солнечной радиации на отражающую поверхность, соответствующих различным высотам Солнца над подстилающей поверхностью.

Технический результат достигается тем, что в способе определения альбедо земной поверхности, включающем развороты СБ КА, движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной поверхности, дополнительно измеряют высоту орбиты КА, по которой определяют угол полураствора видимого с КА диска Земли, выбирают интервал времени, продолжительность которого равна длительности разворота СБ на 180° вокруг оси, параллельной плоскости СБ, и в течение которого угол между радиус-вектором КА и направлением на Солнце ≤ угла полураствора видимого с КА диска Земли, к моменту начала упомянутого интервала времени разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в зенит и измеряют значение тока от СБ, после чего разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в надир и измеряют значение тока от СБ, фиксируют диапазон значений высоты Солнца над плоскостью местного горизонта в упомянутом интервале времени, и значение альбедо земной поверхности для фиксируемого диапазона значений высоты Солнца определяют по формуле

,

где I1,2 - значения тока от СБ, измеренные при совмещении нормали к рабочей поверхности СБ с направлением в зенит и надир, соответственно,

h1,2 - значения высоты Солнца над плоскостью местного горизонта в моменты измерения токов I1,2,

K - коэффициент выходной мощности тыльной поверхности СБ относительно выходной мощности рабочей поверхности СБ.

Суть предлагаемого изобретения поясняется на фиг.1, на которой представлена схема освещения СБ в моменты выполнения измерений тока и введены следующие обозначения:

Z - Земля;

S - направление на Солнце;

R - направление радиус-вектора КА;

Q - угол полураствора видимого с КА диска Земли;

g - угол между радиус-вектором КА и направлением на Солнце;

h - высота Солнца над плоскостью местного горизонта;

M - плоскость местного горизонта;

W - орбита КА;

N - нормаль к рабочей поверхности СБ;

PS - поток солнечного излучения;

PO - суммарный поток отраженного от Земли излучения, поступающий на КА.

Поясним предложенные в способе действия.

В предлагаемом техническом решении используется тот факт, что энергия отраженного от Земли излучения, сосредоточенная в спектральном диапазоне области чувствительности солнечных элементов СБ КА, воспринимается СБ КА для генерации дополнительной электрической энергии. При этом принимаем, что суммарный поток отраженного от Земли излучения, поступающий на КА в каждый текущий момент времени, направлен по нормали к плоскости местного горизонта.

Рассматриваются односторонние СБ и СБ с положительной выходной мощностью их тыльной поверхности - например, у СБ российского сегмента международной космической станции (МКС) и транспортных кораблей «Прогресс» и «Союз», формально являющихся односторонними, выходная мощность тыльной поверхности положительна.

В штатной полетной ориентации СБ нормаль к рабочей поверхности СБ совмещается с направлением на Солнце.

Измеряют высоту орбиты КА, по которой определяют угол Q полураствора видимого с КА диска Земли. Определение Q может быть выполнено, например, по соотношению

где RZ - радиус Земли,

Horb - высота орбиты КА.

Определяют значение Δt - длительность разворота СБ на 180° вокруг оси, параллельной плоскости СБ. Время Δt определяется угловой скоростью вращения СБ.

Выбирают интервал времени продолжительностью Δt, в течение которого выполняется условие

где g - угол между радиус-вектором КА и направлением на Солнце.

При таком значении угла g вся видимая с КА в текущий момент подстилающая земная поверхность освещена солнечным излучением. Угол g связан с высотой Солнца над плоскостью местного горизонта h соотношением

Обозначим t1 и t2 - моменты начала и окончания данного интервала.

Такой выбор моментов t1 и t2 означает то, что вся видимая с КА в моменты t1 и t2 подстилающая земная поверхность освещена солнечным излучением и за время от t1 до t2 нормаль к рабочей поверхности СБ может быть развернута на угол 180°. Такие интервалы времени всегда существуют на витках орбиты, на которых продолжительность теневой части витка не менее, чем Δt.

К моменту t1 разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в зенит.

В момент t1 измеряют значение тока от СБ (I1) и определяют высоту Солнца над плоскостью местного горизонта (h1).

При такой ориентации СБ на рабочую поверхность СБ поступает поток солнечного излучения PS, угол его падения, отсчитываемый от нормали к плоскости рабочей поверхности СБ, равен g1=90°-h1. На тыльную поверхность СБ поступает поток отраженного излучения PO, направленный вдоль нормали к плоскости тыльной поверхности СБ.

Далее выполняют разворот СБ до совмещения нормали к рабочей поверхности СБ с направлением в надир и измеряют значение тока от СБ. Для этого нормаль к рабочей поверхности СБ поворачивают на 180°, при этом разворот закачивается к моменту t2.

В момент t2 измеряют значение тока от СБ (I2) и определяют высоту Солнца над плоскостью местного горизонта в подспутниковой точке КА (h2).

При такой ориентации СБ на рабочую поверхность СБ поступает поток отраженного излучения PO, направленный вдоль нормали к плоскости рабочей поверхности СБ. На тыльную поверхность СБ поступает поток солнечного излучения PS, угол его падения, отсчитываемый от нормали к плоскости тыльной поверхности СБ, равен g2=90°-h2.

Фиксируют диапазон [h1, h2] - диапазон значений, принимаемых высотой Солнца над плоскостью местного горизонта в течение выбранного интервала времени [t1, t2].

Принимаем, что величина потока отраженного излучения PO в моменты t1 и t2 различается несущественно и может быть принята одинаковой.

Значение альбедо земной поверхности для фиксируемого диапазона значений высоты Солнца [h1, h2] определяют по формуле

где K - коэффициент выходной мощности тыльной поверхности СБ относительно выходной мощности рабочей поверхности СБ, являющийся заданной технической характеристикой СБ.

Вышеописанные действия многократно выполняют для различных выбранных предложенным образом интервалов времени.

Поясним соотношение (4). Альбедо земной поверхности определяется соотношением

Поскольку излучение, под воздействием которого СБ генерирует ток, пропорционально генерируемому току, то

где IO и IS - токи, вырабатываемые СБ под воздействием потоков излучения PO и PS, соответственно, при ориентации нормали к рабочей поверхности СБ навстречу потоку.

Эффективное значение плотности потока солнечного излучения, поступающего на поверхность СБ, и ток, вырабатываемый СБ, пропорциональны косинусу угла падения излучения, отсчитываемого от нормали к плоскости СБ (Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва, Наука, 1984).

С учетом этого значения токов I1, I2, составляют:

Из системы уравнений (6), (7), (8) с учетом (3) получаем (4).

Опишем технический эффект предлагаемого изобретения.

Полученный технический результат заключается в определении значения альбедо земной поверхности для различных углов падения солнечной радиации на отражающую поверхность, соответствующих фиксируемым высотам Солнца, по измеренным значениям тока от СБ орбитального КА, при этом каждое определенное значение альбедо:

- определяется одновременно для двух конкретных областей подстилающей земной поверхности, разнесенных вдоль трассы КА на заданное расстояние, равное перемещению КА за время разворота СБ на 180°,

- соответствует конкретному диапазону значений высоты Солнца, в пределах которого высота Солнца изменяется за время разворота СБ на 180°,

- получено на конкретном интервале времени, продолжительность которого равна длительности разворота СБ на 180°.

Таким образом, предлагаемое техническое решение обеспечивает определение альбедо двух фиксируемых областей подстилающей земной поверхности, координаты которых разнесены вдоль трассы КА на заданное расстояние, равное перемещению КА за время разворота СБ на 180°, и которые обладают одинаковыми отражательными свойствами на фиксируемом интервале времени, продолжительность которого равна длительности разворота СБ на 180°, при фиксируемом диапазоне углов падения солнечной радиации на отражающую поверхность, в пределах которого данный угол изменяется за время разворота СБ на 180°.

Полученное значение альбедо соответствует зафиксированному диапазону значений высоты Солнца [h1, h2]. На каждом витке орбиты, на котором продолжительность теневой части витка не менее Δt, можно выбрать разные интервалы времени [t1, t2], имеющие продолжительность Δt и удовлетворяющие условию (2), при этом разным интервалам [t1, t2] соответствуют разные диапазоны значений высоты Солнца [h1, h2]. Поэтому данный способ позволяет получить на каждом конкретном витке орбиты КА значения альбедо для любой из возможных реализаций данного диапазона значений высоты Солнца на данном витке.

Технический результат достигается за счет предложенных измерений и фиксации значений высоты Солнца над плоскостью местного горизонта КА, определения значения альбедо земной поверхности по измеренным в предложенные моменты времени значениям тока от СБ КА, развернутых в предложенные положения, с использованием предложенной формулы для вычислений, а также за счет того, что предложенные моменты измерений тока от СБ определяются с использованием предложенных навигационных измерений орбиты КА и предложенных геометрических и временных условий и факторов.

Предлагаемый способ применим к КА с любым количеством СБ, в том числе при его реализации можно задействовать любое количество СБ. Отметим, что для интерпретации и дальнейшего использования полученных значений альбедо целесообразно также фиксировать метеорологические условия над подстилающей поверхностью (в частности, величину и характер облачности) и навигационные параметры движения КА.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Способ определения альбедо земной поверхности, включающий развороты солнечной батареи космического аппарата, движущегося по околокруговой орбите вокруг Земли, измерение значений тока от солнечной батареи и определение по ним значения альбедо земной поверхности, отличающийся тем, что дополнительно измеряют высоту орбиты космического аппарата, по которой определяют угол полураствора видимого с космического аппарата диска Земли, выбирают интервал времени, продолжительность которого равна длительности разворота солнечной батареи на 180° вокруг оси, параллельной плоскости солнечной батареи, и в течение которого угол между радиус-вектором космического аппарата и направлением на Солнце ≤ угла полураствора видимого с космического аппарата диска Земли, к моменту начала упомянутого интервала времени разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в зенит и измеряют значение тока от солнечной батареи, после чего разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в надир и измеряют значение тока от солнечной батареи, фиксируют диапазон значений высоты Солнца над плоскостью местного горизонта в упомянутом интервале времени, и значение альбедо земной поверхности для фиксируемого диапазона значений высоты Солнца определяют по формуле , где I - значения тока от солнечной батареи, измеренные при совмещении нормали к рабочей поверхности солнечной батареи с направлением в зенит и надир, соответственно; h - значения высоты Солнца над плоскостью местного горизонта в моменты измерения токов I; K - коэффициент выходной мощности тыльной поверхности солнечной батареи относительно выходной мощности рабочей поверхности солнечной батареи.
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 379.
20.05.2016
№216.015.4078

Наглядное пособие

Изобретение относится к наглядным учебным и игровым пособиям. От двух до трех блоков поворотных относительно оси элементов соединены между собой. На поворотных элементах размещены визуальные элементы, комбинации которых формируют единые смысловые изображения. В сложенном состоянии блоков каждый...
Тип: Изобретение
Номер охранного документа: 0002584117
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4b3e

Приемник-преобразователь лазерного излучения

Приемник-преобразователь лазерного излучения включает приемную плоскость, выполненную в виде круговой панели. На внешней стороне панели установлены фотоэлектрические преобразователи на основе полупроводниковых фотоэлементов (ФЭ) с внутренним фотоэффектом для непосредственного преобразования...
Тип: Изобретение
Номер охранного документа: 0002594953
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d45

Электрогенерирующая сборка термоэмиссионного реактора-преобразователя (варианты)

Изобретение может быть использовано в космической технике и атомной энергетике при создании высокоэффективных космических ядерных энергетических установок на основе термоэмиссионного реактора-преобразователя. В электрогенерирующей сборке (ЭГС) термоэмиссионного реактора-преобразователя,...
Тип: Изобретение
Номер охранного документа: 0002595261
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4ec1

Система спутников наблюдения планеты

Изобретение относится к космическим спутниковым системам локального обзора. Система состоит из спутников с оптико-электронной аппаратурой дистанционного зондирования, размещенных на круговых орбитах с одинаковыми высотами и наклонениями. Восходящие узлы орбит перемещаются относительно проекции...
Тип: Изобретение
Номер охранного документа: 0002595240
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
Показаны записи 201-210 из 352.
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4078

Наглядное пособие

Изобретение относится к наглядным учебным и игровым пособиям. От двух до трех блоков поворотных относительно оси элементов соединены между собой. На поворотных элементах размещены визуальные элементы, комбинации которых формируют единые смысловые изображения. В сложенном состоянии блоков каждый...
Тип: Изобретение
Номер охранного документа: 0002584117
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
+ добавить свой РИД