×
10.04.2015
216.013.4012

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002547890
Дата охранного документа
10.04.2015
Аннотация: Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (KA), движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной поверхности. Дополнительно измеряют угол между направлением на Солнце и плоскостью орбиты KA β. Определяют момент времени прохождения подсолнечной точки витка орбиты t. Разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в зенит и измеряют ток от СБ I. Разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в надир и измеряют ток от СБ I. Измерения тока от СБ выполняют в моменты времени соответственно , где Δt - длительность разворота СБ на 180° вокруг оси, параллельной плоскости СБ. Определяют и фиксируют значение высоты Солнца над плоскостью местного горизонта в упомянутые моменты измерения токов от СБ. 1 ил.
Основные результаты: Способ определения альбедо земной поверхности, включающий развороты солнечной батареи космического аппарата, движущегося по околокруговой орбите вокруг Земли, измерение значений тока от солнечной батареи и определение по ним значения альбедо земной поверхности, отличающийся тем, что дополнительно измеряют угол между направлением на Солнце и плоскостью орбиты космического аппарата, определяют момент времени прохождения подсолнечной точки витка орбиты, разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в зенит и измеряют ток от солнечной батареи, после чего разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в надир и измеряют ток от солнечной батареи, при этом упомянутые измерения тока от солнечной батареи выполняют в моменты времени соответственно , где t - момент времени прохождения подсолнечной точки витка орбиты, Δt - длительность разворота солнечной батареи на 180° вокруг оси, параллельной плоскости солнечной батареи,определяют и фиксируют значение высоты Солнца над плоскостью местного горизонта в упомянутые моменты измерения токов от солнечной батареи, а значение альбедо земной поверхности для фиксируемого значения высоты Солнца определяют по формуле ,где I - значения тока от солнечной батареи, измеренные в моменты времени t соответственно; K - коэффициент выходной мощности тыльной поверхности солнечной батареи относительно выходной мощности рабочей поверхности солнечной батареи; T - период обращения космического аппарата; β - угол между направлением на Солнце и плоскостью орбиты.

Изобретение относится к области космической техники и может быть использовано для определения и контроля интегральных параметров лучистого теплообмена планеты, вокруг которой обращается космический аппарат (KA).

Солнечное изучение, поступающее к Земле, отражается от ее поверхности, от облаков, рассеивается атмосферой. Альбедо поверхности Земли - это отношение потока излучения, отраженного этой поверхностью в окружающее пространство, к потоку, упавшему на нее.

При теоретическом расчете значения альбедо Земли может приниматься, что оптические характеристики Земли такие же, как и у однородной диффузно отражающей поверхности с коэффициентом отражения 0,34 (Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983).

Определение альбедо Земли может быть выполнено по метеорологическим данным и данным о сезонном и географическом распределении полной облачности и отражательных способностях различных видов облаков и подстилающей поверхности, получаемая при этом средняя расчетная величина альбедо Земли оценивается равной 0,35 (Кондратьев К.Я. Актинометрия. - М.: Гидрометеоиздат. 1965; Крошкин М.Г. Физико-технические основы космических исследований. - М.: Машиностроение. 1969).

Как видно из изложенного, вопрос о точном определении альбедо Земли далек от окончательного решения. Используемые в расчетах модели имеют ограниченную точность, что не позволяет получить абсолютно достоверные данные о текущем значении альбедо Земли и его географическом распределении.

Известен способ определения альбедо земной поверхности (Патент РФ №2 353 920 по заявке №2007129599/28 от 02.08.2007, МПК: G01N 21/55 - прототип), согласно которому определяют моменты нахождения Солнца в зенитной области над снабженным одной или несколькими солнечными батареями (СБ) КА, движущегося по околокруговой орбите вокруг Земли, на двух последовательных витках орбиты и в момент нахождения Солнца в зенитной области над КА при прохождении подсолнечной точки первого витка орбиты разворачивают СБ в рабочее положение, соответствующее совмещению нормали к их рабочей поверхности с направлением на Солнце, а в момент нахождения Солнца в зенитной области над КА при прохождении подсолнечной точки следующего витка орбиты разворачивают СБ в положение, соответствующее совмещению нормали к их рабочей поверхности с противосолнечным направлением, измеряют значения тока от СБ в каждом из описанных положений СБ и определяют значение альбедо Земли А по формуле

где I1,2 - значения тока от СБ, измеренные в моменты прохождения подсолнечных точек соответственно на витке орбиты при совмещении нормали к рабочей поверхности панелей СБ с направлением на Солнце и на последующем витке орбиты при совмещении нормали к рабочей поверхности панелей СБ с противосолнечным направлением;

K - коэффициент выходной мощности тыльной поверхности панелей СБ относительно выходной мощности их рабочей поверхности.

В задаче измерения альбедо земной поверхности существенное значение имеет зависимость альбедо от угла падения солнечной радиации на отражающую поверхность, который характеризуется углом высоты Солнца - углом между направлением на Солнце и плоскостью местного горизонта. Способ-прототип позволяет определять значение альбедо земной поверхности только для случая освещения подстилающей земной поверхности солнечным излучением под прямым углом (по нормали к подстилающей поверхности) и не позволяет определять альбедо земной поверхности при разных углах падения солнечной радиации на отражающую поверхность.

Задачей, на решение которой направлено настоящее изобретение, является определение альбедо земной поверхности для различных углов падения солнечной радиации на отражающую поверхность.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в определении по измеренным значениям тока от СБ орбитального КА значений альбедо земной поверхности для различных углов падения солнечной радиации на отражающую поверхность, соответствующих различным высотам Солнца над подстилающей поверхностью.

Технический результат достигается тем, что в способе определения альбедо земной поверхности, включающем развороты СБ КА, движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной поверхности, дополнительно измеряют угол между направлением на Солнце и плоскостью орбиты КА, определяют момент времени прохождения подсолнечной точки витка орбиты, разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в зенит и измеряют ток от СБ, после чего разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в надир и измеряют ток от СБ, при этом упомянутые измерения тока от СБ выполняют в моменты времени соответственно ,

где ts - момент времени прохождения подсолнечной точки витка орбиты,

Δt - длительность разворота СБ на 180° вокруг оси, параллельной плоскости СБ,

определяют и фиксируют значение высоты Солнца над плоскостью местного горизонта в упомянутые моменты измерения токов от СБ, а значение альбедо земной поверхности для фиксируемого значения высоты Солнца определяют по формуле

где I1,2 - значения тока от СБ, измеренные в упомянутые моменты времени t1,2 соответственно,

K - коэффициент выходной мощности тыльной поверхности СБ относительно выходной мощности рабочей поверхности СБ,

T - период обращения КА,

β - угол между направлением на Солнце и плоскостью орбиты.

Суть предлагаемого изобретения поясняется на фиг.1, на которой представлена схема освещения СБ в моменты выполнения измерений тока и введены следующие обозначения:

Z - Земля;

S - направление на Солнце;

R - направление радиус-вектора КА;

Q - угол полураствора видимого с КА диска Земли;

g - угол между радиус-вектором КА и направлением на Солнце;

h - высота Солнца над плоскостью местного горизонта;

β - угол между направлением на Солнце и плоскостью орбиты KA;

М - плоскость местного горизонта;

W - орбита KA;

Sp - проекция направления на Солнце на плоскость орбиты KA;

N - нормаль к рабочей поверхности СБ;

PS - поток солнечного излучения;

PO - суммарный поток отраженного от Земли излучения, поступающий на КА.

Поясним предложенные в способе действия.

В предлагаемом техническом решении используется тот факт, что энергия отраженного от Земли излучения, сосредоточенная в спектральном диапазоне области чувствительности солнечных элементов СБ КА, воспринимается СБ КА для генерации дополнительной электрической энергии. При этом принимаем, что суммарный поток отраженного от Земли излучения, поступающий на КА в каждый текущий момент времени, направлен по нормали к плоскости местного горизонта.

Рассматриваются односторонние СБ и СБ с положительной выходной мощностью их тыльной поверхности - например, у СБ российского сегмента международной космической станции (МКС) и транспортных кораблей «Прогресс» и «Союз», формально являющихся односторонними, выходная мощность тыльной поверхности положительна.

В штатной полетной ориентации СБ нормаль к рабочей поверхности СБ совмещается с направлением на Солнце.

Измеряют угол между направлением на Солнце и плоскостью орбиты КА β.

Определяют момент времени прохождения подсолнечной точки витка орбиты КА tS.

К моменту времени t1, который определяется соотношением

где Δt - длительность разворота СБ на 180° вокруг оси, параллельной плоскости СБ,

разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в зенит. В момент t1 измеряют ток от СБ (I1).

При такой ориентации СБ на рабочую поверхность СБ поступает поток солнечного излучения PS, угол его падения, отсчитываемый от нормали к плоскости рабочей поверхности СБ, равен углу между радиус-вектором КА и направлением на Солнце g. На тыльную поверхность СБ поступает поток отраженного излучения PO, направленный вдоль нормали к плоскости тыльной поверхности СБ.

После этого разворачивают СБ до совмещения нормали к рабочей поверхности СБ с направлением в надир. Для этого нормаль к рабочей поверхности СБ поворачивают на 180°, при этом данный разворот реализуется за время Δt и закачивается в момент t2, который определяется соотношением

В момент t2 измеряют ток от СБ (I2).

При такой ориентации СБ на рабочую поверхность СБ поступает поток отраженного излучения PO, направленный вдоль нормали к плоскости рабочей поверхности СБ. На тыльную поверхность СБ поступает поток солнечного излучения PS, угол его падения, отсчитываемый от нормали к плоскости тыльной поверхности СБ, равен g.

Определяют и фиксируют значение высоты Солнца над плоскостью местного горизонта в упомянутые моменты измерения токов от СБ.

Моменты t1 и t2 заданы таким образом, что высота Солнца h над плоскостью местного горизонта в эти моменты времени одинакова и равна величине

Соотношение (3) получается из формул

где T - период обращения КА,

Δu - изменение значения аргумента широты между точкой орбиты в момент tS и точками орбиты в моменты t1 и t2.

Принимаем, что величина потока отраженного излучения РО в моменты t1 и t2 различается незначительно и может быть принята одинаковой.

Значение альбедо земной поверхности для фиксируемого значения высоты Солнца определяют по формуле

где K - заданный коэффициент выходной мощности тыльной поверхности СБ относительно выходной мощности рабочей поверхности СБ, являющийся заданной технической характеристикой СБ.

Вышеописанные действия многократно выполняем для различных витков орбиты КА.

Поясним соотношение (7). Альбедо земной поверхности определяется соотношением

Поскольку излучение, под воздействием которого СБ генерирует ток, пропорционально генерируемому току, то

где IO и IS - токи, вырабатываемые СБ под воздействием потоков излучения PO и PS соответственно при ориентации нормали к рабочей поверхности СБ навстречу потоку.

Эффективное значение плотности потока солнечного излучения, поступающего на поверхность СБ, и ток, вырабатываемый СБ, пропорциональны косинусу угла падения излучения, отсчитываемого от нормали к плоскости СБ (Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. «Наука», 1984).

С учетом этого значения токов I1, I2 составляют

Из системы уравнений (9), (10), (11), подставляя (4) и (6), получаем (7).

Опишем технический эффект предлагаемого изобретения.

Полученный технический результат заключается в определении значений альбедо значения альбедо земной поверхности для различных углов падения солнечной радиации на отражающую поверхность, соответствующих фиксируемым высотам Солнца, по измеренным значениям тока от СБ орбитального КА, при этом каждое определенное значение альбедо:

- определяется одновременно для двух конкретных областей подстилающей земной поверхности, разнесенных вдоль трассы KA на заданное расстояние, равное перемещению KA за время разворота СБ на 180°;

- соответствует конкретному значению высоты Солнца над подстилающей поверхностью;

- получено на конкретном интервале времени, продолжительность которого равна длительности разворота СБ на 180°.

Таким образом, предлагаемое техническое решение обеспечивает определение альбедо двух фиксируемых областей подстилающей земной поверхности, координаты которых разнесены вдоль трассы KA на заданное расстояние, равное перемещению KA за время разворота СБ на 180°, и которые обладают одинаковыми отражательными свойства на фиксируемом интервале времени, продолжительность которого равна длительности разворота СБ на 180°, при фиксируемом значении угла падения солнечной радиации на отражающую поверхность. Данный угол падения солнечной радиации на отражающую поверхность соответствует зафиксированному значению высоты Солнца, однозначно определяемому значением продолжительности разворота СБ Δt и значением угла между направлением на Солнце и плоскостью орбиты KA β.

Технический результат достигается за счет предложенных измерений и фиксации значений высоты Солнца над плоскостью местного горизонта КА, определения значения альбедо земной поверхности по измеренным в предложенные моменты времени значениям тока от СБ KA, развернутых в предложенные положения, с использованием предложенной формулы для вычислений, а также за счет того, что предложенные моменты измерений тока от СБ определяются с использованием предложенных навигационных измерений орбиты KA и предложенных геометрических и временных условий и факторов.

Предлагаемый способ применим к KA с любым количеством СБ, в том числе при его реализации можно задействовать любое количество СБ. Отметим, что для интерпретации и дальнейшего использования полученных значений альбедо целесообразно также фиксировать метеорологические условия над подстилающей поверхностью (в частности, величину и характер облачности) и навигационные параметры движения KA.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Способ определения альбедо земной поверхности, включающий развороты солнечной батареи космического аппарата, движущегося по околокруговой орбите вокруг Земли, измерение значений тока от солнечной батареи и определение по ним значения альбедо земной поверхности, отличающийся тем, что дополнительно измеряют угол между направлением на Солнце и плоскостью орбиты космического аппарата, определяют момент времени прохождения подсолнечной точки витка орбиты, разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в зенит и измеряют ток от солнечной батареи, после чего разворачивают солнечную батарею до совмещения нормали к рабочей поверхности солнечной батареи с направлением в надир и измеряют ток от солнечной батареи, при этом упомянутые измерения тока от солнечной батареи выполняют в моменты времени соответственно , где t - момент времени прохождения подсолнечной точки витка орбиты, Δt - длительность разворота солнечной батареи на 180° вокруг оси, параллельной плоскости солнечной батареи,определяют и фиксируют значение высоты Солнца над плоскостью местного горизонта в упомянутые моменты измерения токов от солнечной батареи, а значение альбедо земной поверхности для фиксируемого значения высоты Солнца определяют по формуле ,где I - значения тока от солнечной батареи, измеренные в моменты времени t соответственно; K - коэффициент выходной мощности тыльной поверхности солнечной батареи относительно выходной мощности рабочей поверхности солнечной батареи; T - период обращения космического аппарата; β - угол между направлением на Солнце и плоскостью орбиты.
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ЗЕМНОЙ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 379.
20.07.2015
№216.013.62ea

Устройство транспортировки и прокладки кабелей на внешней поверхности космического объекта космонавтом в скафандре и способ эксплуатации устройства

Изобретение относится к космической технике, в частности к средствам и способам выполнения технологических операций в условиях открытого космоса космонавтом в скафандре, а именно к оборудованию для транспортировки и прокладки кабелей на внешней поверхности космических объектов, например,...
Тип: Изобретение
Номер охранного документа: 0002556869
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.667c

Система хранения и подачи иода

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем...
Тип: Изобретение
Номер охранного документа: 0002557789
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6861

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Сущность: устройство содержит корпус (1) с расточкой (3), сообщенной с внутренней полостью (4) корпуса (1). В уплотнительных...
Тип: Изобретение
Номер охранного документа: 0002558274
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.694b

Штатив для установки оборудования наблюдения

Изобретение относится к крепежным элементам космического аппарата (КА) для установки оборудования наблюдения, размещаемого, как правило, на иллюминаторе стыковочного агрегата КА. Штатив содержит опору, снабженную крепежными стойками с посадочными площадками (8) и элементами их крепления (9) на...
Тип: Изобретение
Номер охранного документа: 0002558508
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6966

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, размещенные внутри него на плате электродвигатель с шестерней на его валу и цилиндрический зубчатый редуктор из n (n=2, 3 и...
Тип: Изобретение
Номер охранного документа: 0002558535
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b4c

Устройство для сигнализации о заземлениях в цепях постоянного тока

Предлагаемое устройство для сигнализации о заземлениях в цепях постоянного тока может найти широкое применение в изделиях ракетно-космической техники, где требуется высокая надежность при проверке работоспособности сложных систем автоматики и недопустимость ложного попадания плюса источника...
Тип: Изобретение
Номер охранного документа: 0002559026
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dca

Дренажное устройство криогенного компонента ракетного разгонного блока со съемным отсеком

Изобретение относится к ракетно-космической технике, а именно к конструкции дренажа криогенного компонента из криогенного бака ракетного разгонного блока в составе ракеты космического назначения. Дренажное устройство криогенного компонента ракетного разгонного блока со съемным отсеком состоит...
Тип: Изобретение
Номер охранного документа: 0002559664
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dcc

Механизм герметизации стыка стыковочных агрегатов

Изобретение относится к космической технике и может быть использовано для герметизации стыков стыковочных агрегатов. Механизм герметизации стыка стыковочных агрегатов содержит стыковочные шпангоуты с системами замков с пассивными крюками и активными крюками на эксцентриковых валах со шкивами с...
Тип: Изобретение
Номер охранного документа: 0002559666
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df5

Способ цифровой фильтрации дискретного сигнала и цифровой фильтр для его реализации

Изобретение относится к области вычислительной техники, к технике цифровой фильтрации и может быть использовано при разработке цифровых фильтров в дискретных системах. Достигаемый технический результат - повышение быстродействия и помехоустойчивости. Способ цифровой фильтрации основан на...
Тип: Изобретение
Номер охранного документа: 0002559707
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7281

Способ эксплуатации твердополимерного электролизера воды

Изобретение относится к способу эксплуатации твердополимерного электролизера воды, включающему подачу в него постоянного напряжения питания и реакционной воды, нагрев твердополимерного электролизера и реакционной воды до рабочей температуры, соответствующей заданному значению тока электролиза с...
Тип: Изобретение
Номер охранного документа: 0002560883
Дата охранного документа: 20.08.2015
Показаны записи 141-150 из 352.
27.06.2015
№216.013.5a79

Двигатель с замкнутым дрейфом электронов

Предлагаемое изобретение относится к области электроракетных двигателей. В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру,...
Тип: Изобретение
Номер охранного документа: 0002554702
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b27

Способ эксплуатации твердополимерного электролизера

Изобретение относится к способу эксплуатации твердополимерного электролизера, включающему подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза,...
Тип: Изобретение
Номер охранного документа: 0002554876
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5f25

Ракетно-космическая система

Изобретение относится к ракетно-космической технике и может быть использовано в последних ступенях ракет-носителей. Ракетно-космическая система (РКС) содержит ракету-носитель с последней ступенью с внешним корпусным отсеком с силовым промежуточным опорным шпангоутом с состыкованными между собой...
Тип: Изобретение
Номер охранного документа: 0002555898
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60a6

Способ испытаний на герметичность гидравлической системы терморегулирования космического аппарата, снабженной гидропневматическим компенсатором с ограничительной решеткой жидкостной полости

Изобретение относится к космической технике, а именно к способам испытаний на герметичность гидравлических систем терморегулирования (СТР) космических аппаратов, снабженных гидропневматическими компенсаторами, при их наземной подготовке. Заявленный способ испытаний на герметичность...
Тип: Изобретение
Номер охранного документа: 0002556283
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62e9

Устройство управления электромагнитным исполнительным органом (варианты)

Изобретение относится к области электрической и электронной автоматики и может быть использовано в устройствах коммутации различных электромагнитных исполнительных органов (ЭМИО). Технический результат - снижение уровня помех и уменьшение влияния на быстродействие электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002556868
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.62ea

Устройство транспортировки и прокладки кабелей на внешней поверхности космического объекта космонавтом в скафандре и способ эксплуатации устройства

Изобретение относится к космической технике, в частности к средствам и способам выполнения технологических операций в условиях открытого космоса космонавтом в скафандре, а именно к оборудованию для транспортировки и прокладки кабелей на внешней поверхности космических объектов, например,...
Тип: Изобретение
Номер охранного документа: 0002556869
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.667c

Система хранения и подачи иода

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем...
Тип: Изобретение
Номер охранного документа: 0002557789
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6861

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Сущность: устройство содержит корпус (1) с расточкой (3), сообщенной с внутренней полостью (4) корпуса (1). В уплотнительных...
Тип: Изобретение
Номер охранного документа: 0002558274
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.694b

Штатив для установки оборудования наблюдения

Изобретение относится к крепежным элементам космического аппарата (КА) для установки оборудования наблюдения, размещаемого, как правило, на иллюминаторе стыковочного агрегата КА. Штатив содержит опору, снабженную крепежными стойками с посадочными площадками (8) и элементами их крепления (9) на...
Тип: Изобретение
Номер охранного документа: 0002558508
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6966

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, размещенные внутри него на плате электродвигатель с шестерней на его валу и цилиндрический зубчатый редуктор из n (n=2, 3 и...
Тип: Изобретение
Номер охранного документа: 0002558535
Дата охранного документа: 10.08.2015
+ добавить свой РИД