×
10.04.2015
216.013.3edb

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к строительству, а именно к способу исследования процесса дисперсного армирования и микроармирования бетонов для повышения их трещиностойкости. Для этого изучают взаимодействие стекловолокна с цементным камнем в течение заданного времени. Предварительно стекловолокно наклеивают на пластиковую пластинку, вкладывают ее в форму для приготовления цементных образцов и заливают цементным тестом. Пластиковую пластинку с приклеенным стекловолокном вкладывают таким образом, чтобы стекловолокно соприкасалось с цементным тестом. После отвердения цементные образцы извлекают из формы и отделяют волокно от пластинки. Затем волокно исследуют с помощью рентгеноспектрального анализа и электронной микроскопии. Способ позволяет определить элементный состав, структуру продуктов взаимодействия волокна с цементным камнем. Кроме того, оценивают стойкость стекловолокна по сравнению диаметра стекловолокна после испытания с диаметром исходного волокна. Изобретение позволяет сравнивать применение стекловолокон различного состава в качестве армирующих материалов. 7 ил.
Основные результаты: Способ исследования стойкости стекловолокна к воздействию агрессивной среды, включающий взаимодействие стекловолокна с агрессивной средой в течение заданного времени и последующее определение диаметра стекловолокна, по изменению диаметра участков свободного от продуктов реакции волокна по сравнению с диаметром исходного волокна судят о стойкости стекловолокна, отличающийся тем, что в качестве агрессивной среды используют цементный камень, при этом предварительно стекловолокно наклеивают на пластиковую пластинку, вкладывают ее в форму для приготовления цементных образцов и заливают цементным тестом, причем вкладывают в форму пластиковую пластинку с приклеенным стекловолокном таким образом, чтобы стекловолокно соприкасалось с цементным тестом, после необходимого срока твердения цементные образцы извлекают из формы, отделяют пластиковую пластинку с приклеенным стекловолокном и волокно от пластинки, затем волокно исследуют с помощью рентгеноспектрального анализа и электронной микроскопии, определяя элементный состав и структуру продуктов взаимодействия волокна с цементным камнем.

Изобретение относится к способам исследования состава и структуры вещества и может быть использовано для определения оптимального вида стекловолокна для дисперсного армирования и микроармирования бетонов.

Дисперсное армирование бетонов применяют для повышения трещиностойкости бетонов. Одним из перспективных видов армирующих материалов является стекловолокно различного состава. Существенным препятствием для использования стекловолокна с этой целью является низкая щелочестойкость стекловолокна.

Известны способы исследования устойчивости стекол к воздействию щелочей, например способ, описанный в ГОСТ 19810-85. Стекло медицинское. Метод определения щелочестойкости. Способ заключается в воздействии на стекло кипящей смеси равных объемов раствора углекислого натрия (Na CO) концентрации 0,5 моль/дм и раствора гидроокиси натрия (NaOH) концентрации 1 моль/дм и определении отношения потери массы образца стекла после испытания к единице площади поверхности образца.

Недостатком известного способа является то обстоятельство, что он не позволяет определить состав и структуру продуктов взаимодействия стекла со щелочными компонентами.

Известен также способ определения щелочестойкости стекловолокна, описанный в работе Зак А.Ф., Физико-химические свойства стеклянного волокна. М.: Ростехиздат, 1962. 224 с. Волокно вводят в растворные образцы-балочки и определяют изменение прочности образцов при растяжении в зависимости от времени в сравнении с такими же образцами без волокна.

Этот способ также не дает возможности определить состав и структуру продуктов реакции между стекловолокном и щелочью.

Указанные способы по сути являются неполными моделями исследуемого процесса.

Критерием щелочестойкости стекловолокна в соответствии с указанными способами является изменение размера образца стекла или изменение диаметра стекловолокна в растворе щелочи, измеренное под микроскопом. Однако взаимодействия стекловолокна с моделью цемента не учитывают ни состава цемента, ни влияния продуктов взаимодействия минералов цемента с водой, ни реального соотношения компонентов системы «стекловолокно-цемент-вода».

Наиболее близким к предлагаемому является способ, описанный в статье Сарайкиной К.А. и Семковой Е.Н. Исследование процесса выщелачивания минеральных волокон в цементной среде // В сб. Наука. Технологии. Инновации: материалы всерос. научн. конф. - Новосибирск, 2012. Согласно способу исследование стойкости стекловолокна производят в контакте с реальным компонентом, являющимся одним из продуктов твердения цемента - гидроксид кальция. После воздействия раствора гидроксида кальция определяют диаметр стекловолокна. Критерием интенсивности взаимодействия стекловолокна с твердеющим бетоном является изменение диаметра волокна. Данный способ принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения: взаимодействие стекловолокна с агрессивной средой в течение заданного времени; последующее определение диаметра стекловолокна; о стойкости стекловолокна судят по изменению диаметра участков свободного от продуктов реакции волокна по сравнению с диаметром исходного волокна.

Недостатком известного способа является невозможность определения состава и структуры продуктов взаимодействия.

Задачей изобретения является создание способа исследования стойкости стекловолокна к взаимодействию с цементным камнем, позволяющего определить состав и структуры продуктов этого взаимодействия.

Поставленная задача была решена за счет того, что в известном способе исследования стойкости стекловолокна к воздействию агрессивной среды, включающем взаимодействие стекловолокна с агрессивной средой в течение заданного времени и последующее определение диаметра стекловолокна, по изменению диаметра участков свободного от продуктов реакции волокна по сравнению с диаметром исходного волокна судят о стойкости стекловолокна, согласно изобретению в качестве агрессивной среды используют цементный камень, при этом предварительно стекловолокно наклеивают на пластиковую пластинку, вкладывают ее в форму для приготовления цементных образцов и заливают цементным тестом, причем вкладывают в форму пластиковую пластинку с приклеенным стекловолокном таким образом, чтобы стекловолокно соприкасалось с цементным тестом, после необходимого срока твердения цементные образцы извлекают из формы, отделяют пластиковую пластинку с приклеенным стекловолокном и волокно от пластинки, затем волокно исследуют с помощью рентгеноспектрального анализа и электронной микроскопии, определяя элементный состав и структуру продуктов взаимодействия волокна с цементным камнем.

Признаки заявляемого технического решения, отличительные от решения по прототипу: в качестве агрессивной среды используют цементный камень; предварительно наклеивают стекловолокно на пластиковую пластинку; вкладывают ее в форму для приготовления цементных образцов и заливают цементным тестом; вкладывают в форму пластиковую пластинку с приклеенным стекловолокном таким образом, чтобы стекловолокно соприкасалось с цементным тестом; после необходимого срока твердения цементные образцы извлекают из формы; отделяют пластиковую пластинку с приклеенным стекловолокном; отделяют волокно от пластинки; исследуют волокно с помощью рентгеноспектрального анализа и электронной микроскопии, определяя элементный состав и структуру продуктов взаимодействия волокна с цементным камнем.

Предварительное наклеивание стекловолокна на пластиковую пластинку дает возможность извлечения волокна из твердеющего цемента в любой срок твердения образцов.

Введение стекловолокна в цементное тесто в момент формования цементного образца и нахождение волокна в образце в течение всего срока твердения позволит определить состав и структуру продуктов взаимодействия волокна с цементным камнем в любой срок.

Предлагаемый способ поясняется чертежами, представленными на фиг.1-7.

На фиг.1 изображен образец-вкладыш.

На фиг.2 - распалубленный образец-кубик с вкладышем.

На фиг.3 показана структура поверхности стеклянного волокна после контакта с цементным камнем в течение 28 суток.

На фиг.4 - результаты рентгеноспектрального элементного анализа исходного волокна.

На фиг.5 - результаты рентгеноспектрального элементного анализа исходного волокна после 28 суток контакта с твердеющим цементом.

На фиг.6 - диаметр стекловолокна до эксперимента.

На фиг.7 - поверхность стекловолокна после взаимодействия с цементным камнем. Видно участок, свободный от новообразований, диаметр которого можно измерить.

Способ исследования стойкости стекловолокна к воздействию агрессивной среды осуществляется в следующей последовательности.

Предварительно изготавливают образцы-вкладыши (фиг.1). Для этого стекловолокно наклеивают на пластиковую пластинку. В качестве агрессивной среды используют цементный камень. Вкладывают образцы в форму для приготовления цементных образцов и заливают цементным тестом. Образец (пластинка с приклеенным стекловолокном) вставляется в форму так, чтобы волокно соприкасалось с цементным тестом с одной стороны, а другой стороной соприкасалось с пластиковой пластинкой. Место приклейки волокна к пластинке должно быть выше уровня цементного теста в форме.

После твердения цементных образцов в течение заданного времени (обычно 3, 7, 14, 28 суток, 3, 6, 12 и более месяцев) их извлекают из формы, раскалывая образцы по плоскости пластинки (фиг.2). Далее отделяют пластиковую пластинку с приклеенным стекловолокном и отделяют волокно от пластинки. Затем исследуют волокно под электронным микроскопом, производя фотосъемку структуры (фиг.3) и определяя параллельно рентгеноспектральный элементный химический анализ продуктов взаимодействия стекловолокна с цементом (фиг.4, 5) и диаметр волокна. Об интенсивности взаимодействия волокна судят по изменению диаметра участков свободного от продуктов реакции волокна по сравнению с диаметром исходного волокна (фиг.6, 7).

Преимущество заявляемого способа состоит в том, что он позволяет проследить за изменениями диаметра самого волокна и определить состав и структуру продуктов взаимодействия стекловолокна с цементом.

Способ исследования стойкости стекловолокна к воздействию агрессивной среды, включающий взаимодействие стекловолокна с агрессивной средой в течение заданного времени и последующее определение диаметра стекловолокна, по изменению диаметра участков свободного от продуктов реакции волокна по сравнению с диаметром исходного волокна судят о стойкости стекловолокна, отличающийся тем, что в качестве агрессивной среды используют цементный камень, при этом предварительно стекловолокно наклеивают на пластиковую пластинку, вкладывают ее в форму для приготовления цементных образцов и заливают цементным тестом, причем вкладывают в форму пластиковую пластинку с приклеенным стекловолокном таким образом, чтобы стекловолокно соприкасалось с цементным тестом, после необходимого срока твердения цементные образцы извлекают из формы, отделяют пластиковую пластинку с приклеенным стекловолокном и волокно от пластинки, затем волокно исследуют с помощью рентгеноспектрального анализа и электронной микроскопии, определяя элементный состав и структуру продуктов взаимодействия волокна с цементным камнем.
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
СПОСОБ ИССЛЕДОВАНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНА К ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 119.
20.08.2015
№216.013.70d7

Термошахтный способ разработки высоковязкой нефти

Изобретение относится к нефтяной промышленности. Технический результат - высокий процент извлечения нефти (до 75%) за счет равномерного объемного распространения тепловых полей, начиная с нижней части продуктивного нефтяного пласта. Термошахтный способ разработки высоковязкой нефти включает...
Тип: Изобретение
Номер охранного документа: 0002560457
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70db

Способ получения защитных покрытий на изделиях с углеродсодержащей основой

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты от окисления изделий, работающих к условиях окислительной среды при высоких температурах. Техническим результатом является повышение жаростойкости, прочности и вязкости разрушения, а также...
Тип: Изобретение
Номер охранного документа: 0002560461
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fb

Способ плазменной термической обработки поверхностного слоя изделий

Изобретение относится к области упрочняющей термической обработки поверхностного слоя изделий. Способ плазменной термической обработки поверхностного слоя изделий включает нагрев рабочей поверхности изделия аргоновой плазменной дугой прямого действия на токе обратной полярности. Нагрев рабочей...
Тип: Изобретение
Номер охранного документа: 0002560493
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.742c

Способ определения температур фазовых превращений в металлических материалах

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и...
Тип: Изобретение
Номер охранного документа: 0002561315
Дата охранного документа: 27.08.2015
10.10.2015
№216.013.805a

Способ определения степени гомогенизации многокомпонентных гетерогенных смесей

Изобретение относится к технологии производства многокомпонентных гетерогенных смесей и может быть использовано в химической, фармацевтической, лакокрасочной и других отраслях промышленности при получении и анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так...
Тип: Изобретение
Номер охранного документа: 0002564455
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80ba

Керамическая масса для производства кирпича

Изобретение относится к области производства строительных изделий, в частности к изготовлению керамического кирпича. Керамическая масса для производства кирпича включает глину, измельченную макулатуру с размером частиц менее 10 мм и измельченные до размера частиц менее 0,5 мм отходы стекла при...
Тип: Изобретение
Номер охранного документа: 0002564551
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.887e

Способ проветривания подземного горнодобывающего предприятия

Изобретение относится к горной промышленности и может быть использовано для проветривания подземных горнодобывающих предприятий. Техническим результатом является повышение энергоэффективности проветривания за счет действия тепловых депрессий, действующих между стволами, и общерудничной...
Тип: Изобретение
Номер охранного документа: 0002566545
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.887f

Система регулирования воздухоподготовки на подземном горнодобывающем предприятии

Изобретение относится к горной промышленности, а именно к системе регулирования воздухоподготовки на поземном горном предприятии. Технический результат заключается в создании высокоэффективной автоматизированной системы регулирования воздухоподготовки на подземном горнодобывающем предприятии,...
Тип: Изобретение
Номер охранного документа: 0002566546
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c8a

Сырьевая смесь для производства керамического кирпича

Изобретение относится к производству керамического кирпича. Технический результат - расширение сырьевой базы. Сырьевая смесь содержит, мас.%: глина 97-90, отход целлюлозно-бумажной промышленности - скоп 3-10. Размер частиц скопа не более 5 мм. Скоп содержит древесное волокно и активный ил в...
Тип: Изобретение
Номер охранного документа: 0002567585
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe5

Сырьевая смесь для производства керамического кирпича

Изобретение относится к производству керамического кирпича с отощающей добавкой и может быть использовано в промышленном и гражданском строительстве. Сырьевая смесь для производства керамического кирпича включает глину и отощающую добавку, в качестве отощающей добавки содержит золу с размером...
Тип: Изобретение
Номер охранного документа: 0002568453
Дата охранного документа: 20.11.2015
Показаны записи 91-100 из 119.
20.08.2015
№216.013.70d7

Термошахтный способ разработки высоковязкой нефти

Изобретение относится к нефтяной промышленности. Технический результат - высокий процент извлечения нефти (до 75%) за счет равномерного объемного распространения тепловых полей, начиная с нижней части продуктивного нефтяного пласта. Термошахтный способ разработки высоковязкой нефти включает...
Тип: Изобретение
Номер охранного документа: 0002560457
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70db

Способ получения защитных покрытий на изделиях с углеродсодержащей основой

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты от окисления изделий, работающих к условиях окислительной среды при высоких температурах. Техническим результатом является повышение жаростойкости, прочности и вязкости разрушения, а также...
Тип: Изобретение
Номер охранного документа: 0002560461
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70fb

Способ плазменной термической обработки поверхностного слоя изделий

Изобретение относится к области упрочняющей термической обработки поверхностного слоя изделий. Способ плазменной термической обработки поверхностного слоя изделий включает нагрев рабочей поверхности изделия аргоновой плазменной дугой прямого действия на токе обратной полярности. Нагрев рабочей...
Тип: Изобретение
Номер охранного документа: 0002560493
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.742c

Способ определения температур фазовых превращений в металлических материалах

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и...
Тип: Изобретение
Номер охранного документа: 0002561315
Дата охранного документа: 27.08.2015
10.10.2015
№216.013.805a

Способ определения степени гомогенизации многокомпонентных гетерогенных смесей

Изобретение относится к технологии производства многокомпонентных гетерогенных смесей и может быть использовано в химической, фармацевтической, лакокрасочной и других отраслях промышленности при получении и анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так...
Тип: Изобретение
Номер охранного документа: 0002564455
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80ba

Керамическая масса для производства кирпича

Изобретение относится к области производства строительных изделий, в частности к изготовлению керамического кирпича. Керамическая масса для производства кирпича включает глину, измельченную макулатуру с размером частиц менее 10 мм и измельченные до размера частиц менее 0,5 мм отходы стекла при...
Тип: Изобретение
Номер охранного документа: 0002564551
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.887e

Способ проветривания подземного горнодобывающего предприятия

Изобретение относится к горной промышленности и может быть использовано для проветривания подземных горнодобывающих предприятий. Техническим результатом является повышение энергоэффективности проветривания за счет действия тепловых депрессий, действующих между стволами, и общерудничной...
Тип: Изобретение
Номер охранного документа: 0002566545
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.887f

Система регулирования воздухоподготовки на подземном горнодобывающем предприятии

Изобретение относится к горной промышленности, а именно к системе регулирования воздухоподготовки на поземном горном предприятии. Технический результат заключается в создании высокоэффективной автоматизированной системы регулирования воздухоподготовки на подземном горнодобывающем предприятии,...
Тип: Изобретение
Номер охранного документа: 0002566546
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c8a

Сырьевая смесь для производства керамического кирпича

Изобретение относится к производству керамического кирпича. Технический результат - расширение сырьевой базы. Сырьевая смесь содержит, мас.%: глина 97-90, отход целлюлозно-бумажной промышленности - скоп 3-10. Размер частиц скопа не более 5 мм. Скоп содержит древесное волокно и активный ил в...
Тип: Изобретение
Номер охранного документа: 0002567585
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe5

Сырьевая смесь для производства керамического кирпича

Изобретение относится к производству керамического кирпича с отощающей добавкой и может быть использовано в промышленном и гражданском строительстве. Сырьевая смесь для производства керамического кирпича включает глину и отощающую добавку, в качестве отощающей добавки содержит золу с размером...
Тип: Изобретение
Номер охранного документа: 0002568453
Дата охранного документа: 20.11.2015
+ добавить свой РИД