×
10.04.2015
216.013.3d85

Результат интеллектуальной деятельности: СПОСОБ ФУНКЦИОНИРОВАНИЯ ПРОЦЕССОРА В СРЕДЕ РЕАЛЬНОГО ВРЕМЕНИ

Вид РИД

Изобретение

№ охранного документа
0002547237
Дата охранного документа
10.04.2015
Аннотация: Изобретение относится к способу функционирования процессора в среде реального времени. Техническим результатом является понижение потребления энергии. В способе процессор после обработки события реального времени переключается из рабочего состояния в состояние покоя. При предстоящем наступлении последующего события реального времени генерируется вспомогательный сигнал, посредством которого процессор перед наступлением последующего события реального времени переключается в рабочее состояние, при этом посредством, по меньшей мере, одного вспомогательного датчика обнаруживается превышение или спадание параметра ниже заданного вспомогательного порогового значения, и вспомогательным датчиком генерируется вспомогательный сигнал, причем вспомогательное пороговое значение достигается в течение изменения значения параметра перед пороговым значением. 6 з.п. ф-лы, 2 ил.

Среды реального времени представляют собой случаи применения компьютеров или подобных устройств обработки данных, которые определенное событие или реакцию должны предоставлять не только корректно, но и гарантированным образом в пределах заданного временного интервала, чтобы обеспечивать безупречную работу оборудования, например робота.

Современные высокопроизводительные процессоры, которые используются в компьютерах, часто имеют высокие мощности потерь при соответствующей генерации тепла. Поэтому часто предусматривается энергосберегающий режим или состояние покоя, в которое процессоры могут переключаться, когда они в текущий момент не требуются.

В средах реального времени энергосберегающие режимы современных процессоров чаще всего не могут использоваться, так как требуемое для повторного возвращения процессора из состояния покоя в рабочее состояние время «пробуждения» влияет на время запаздывания отклика системы, так что требования синхронизации в необходимом случае не выдерживаются. Время запаздывания отклика является временным интервалом между событием реального времени, например, сигналом сенсора, и наиболее поздним допустимым моментом времени требуемой реакции на событие реального времени.

В WO 2009/148472 А2 описано электронное устройство с процессором и планировщиком экономии энергии, который поддерживает таблицу событий, в которой сохраняются завершенные события и для каждого из этих событий временная метка и допустимая временная длительность. Согласно сохраненным в таблице событий временным меткам и допустимым временным длительностям, происходит смена режима работы процессора между состоянием покоя и рабочим состоянием.

В US 2008/0114967 А1 описано устройство на интегральных схемах с термодатчиками, вычислительными блоками и управляющим блоком для управления работой вычислительных блоков в зависимости от сигналов термодатчиков.

Поэтому задачей изобретения является создание улучшенного способа функционирования процессора в средах реального времени.

Указанная задача решается в соответствии с изобретением способом с признаками пункта 1 формулы изобретения.

Предпочтительные варианты осуществления приведены в зависимых пунктах формулы изобретения.

В соответствующем изобретению способе функционирования процессора в среде реального времени процессор после обработки события реального времени переключается из рабочего состояния в состояние покоя (также определяемое как энергосберегающий режим, состояние низкой мощности или состояние бездействия), причем при предстоящем наступлении последующего события реального времени генерируется вспомогательный сигнал, посредством которого процессор перед наступлением последующего события реального времени переключается в рабочее состояние (также определяемое как режим полной нагрузки или полностью рабочий режим). На ожидаемое событие реального времени можно тогда реагировать несмотря на применение состояния покоя с минимальным временем запаздывания отклика. За счет состояния покоя может экономиться энергия и снижаться отдача тепла.

В первой форме выполнения способа функционирования процессора в среде реального времени процессор после обработки первого события реального времени переключается из рабочего состояния в состояние покоя. Вспомогательный сигнал генерируется таймером. По истечении дифференциального интервала, который включает в себя известный временной интервал между двумя последовательными событиями реального времени за вычетом защитного интервала, процессор посредством таймера переключается в рабочее состояние, так что на ожидаемое событие реального времени можно реагировать с минимальным временем запаздывания отклика. Эта форма выполнения пригодна для сред реального времени с хорошо известным режимом синхронизации, то есть сред реального времени, для которых известен точный временной интервал между двумя событиями реального времени. Таким образом, может экономиться энергия и снижаться отдача тепла.

Защитный интервал следует выбирать таким образом, что процессор при наступлении события реального времени переключается в рабочее состояние и готов для обработки события реального времени. Предпочтительным образом защитный интервал выбирается в диапазоне от 10% до 30%, в частности 20%, продолжительности известного временного интервала между двумя следующими друг за другом событиями реального времени. Например, известный временной интервал между событиями реального времени может составлять пять секунд. В качестве защитного интервала выбирается, например, одна секунда, так что процессор на дифференциальный временной интервал в четыре секунды переключается в состояние покоя.

В другой форме выполнения способа функционирования процессора в среде реального времени процессор обрабатывает события реального времени в форме сигнала по меньшей мере одного датчика. Сигнал генерируется датчиком, когда последний обнаруживает превышение или спадание ниже заданного порогового значения некоторого параметра. После обработки первого события реального времени процессор переключается из рабочего состояния в состояние покоя. Кроме того, предусмотрен по меньшей мере один вспомогательный датчик, который контролирует тот же параметр, но обнаруживает превышение или спадание ниже заданного вспомогательного порогового значения некоторого параметра и затем генерирует вспомогательный сигнал. Вспомогательное пороговое значение выбирается при этом таким образом, что оно достигается в течение изменения значения параметра перед пороговым значением. С помощью вспомогательного сигнала процессор переключается в рабочее состояние, так что он при последующем достижении порогового значения готов реагировать на событие реального времени, то есть сигнал датчика. Эта форма выполнения обеспечивает для приложений реального времени, при которых временной интервал между следующими друг за другом событиями реального времени не известен или варьируется, что время запаздывания отклика выдерживается. И в этой форме выполнения может экономиться энергия и снижаться отдача тепла процессора.

Параметр, контролируемый вспомогательным процессором, может представлять собой расстояние, причем пороговое значение является положением, достижение которого представляет собой событие реального времени. Вспомогательное пороговое значение является тогда вспомогательным положением, которое достигается при прохождении расстояния перед упомянутым положением.

Приложение реального времени может представлять собой, например, применение с моторным приводом. При этом приводной мотор в ходе его работы вызывает изменение параметра, контролируемого датчиком и вспомогательным датчиком. Например, с помощью привода мотора проходят упомянутое расстояние. Вследствие достижения обнаруживаемого датчиком положения, процессор отключает приводной мотор. Для того чтобы отключение осуществлялось с высокой точностью, должно выдерживаться время запаздывания отклика. Это обеспечивается посредством других форм выполнения способа.

С каждым датчиком могут быть ассоциированы два вспомогательных датчика, из которых один обнаруживает превышение заданного вспомогательного порогового значения параметра перед превышением порогового значения, причем другой вспомогательный датчик обнаруживает спадание ниже другого заданного вспомогательного порогового значения параметра перед спаданием ниже порогового значения. Например, таким образом, может обнаруживаться изменение положения с двух направлений.

Формы выполнения способа могут предпочтительно применяться в роботе.

Ниже более подробно поясняются примеры выполнения изобретения со ссылками на чертежи, на которых показано следующее:

Фиг.1 - импульсная диаграмма для пояснения способа функционирования процессора в среде реального времени с известным временным интервалом между двумя последовательными событиями реального времени, и

Фиг.2 - среда реального времени и приводимый мотором компонент, который проходит расстояние, причем положение компонента контролируется датчиком и вспомогательным датчиком.

Фиг.1 показывает импульсную диаграмму для пояснения способа функционирования процессора в среде реального времени с известным временным интервалом ZI между двумя последовательными событиями EZE1, EZE2, EZE3 реального времени.

К моменту времени возникновения события EZE1 реального времени процессор находится в рабочем состоянии BZ и остается там для обработки события EZE1 реального времени. После обработки процессор переключается в состояние покоя RZ. Временной интервал ZI между каждыми двумя последовательными событиями EZE1, EZE2, EZE3 реального времени является известным. Определяется дифференциальный интервал DI из временного интервала ZI за вычетом защитного интервала SI. По истечении дифференциального интервала DI процессор вновь переводится в рабочее состояние BZ, чтобы быть готовым для обработки следующего события EZE2 реального времени. Эта процедура повторяется для события EZE3 реального времени и при необходимости для других событий реального времени.

Предпочтительным образом защитный интервал SI выбирается в диапазоне от 10% до 30%, в частности 20%, продолжительности известного временного интервала ZI. Например, известный временной интервал ZI может составлять пять секунд. В качестве защитного интервала SI тогда выбирается, например, одна секунда, так что процессор до истечения дифференциального интервала DI в четыре секунды может переключаться в состояние покоя RZ.

Фиг.2 показывает среду 1 реального времени и приводимый мотором компонент 2, который проходит расстояние s, причем положение компонента 2 контролируется датчиком 3 и вспомогательным датчиком 4. Приводной мотор 5 компонента 2 управляется процессором 6. В показанном на фиг.2 положении процессор 6 переключен в состояние покоя, после чего он при необходимости обрабатывал заданное событие реального времени.

Во время прохождения расстояния s приводимый мотором компонент 2 сначала достигает положения вспомогательного датчика 4, что обнаруживается им как превышение вспомогательного порогового значения HSW, после чего генерируется вспомогательный сигнал HS, посредством которого процессор 6 переключается в рабочее состояние BZ.

Приводимый мотором компонент 2 продолжает свое движение и достигает положения датчика 3, что обнаруживается им как превышение порогового значения SW, после чего генерируется сигнал, который представляет событие EZE реального времени. Процессор к этому моменту времени находится уже в рабочем состоянии BZ, тем самым он может реагировать на событие EZE реального времени. Например, процессор 6 отключает приводной мотор 5 вследствие события EZE реального времени.

Вспомогательное пороговое значение HSW выбирается таким образом, что оно при изменении параметра достигается перед пороговым значением SW.

Параметром, контролируемым датчиком 3 или вспомогательным датчиком 4, может быть расстояние s или другой параметр, например выбранный из физических, химических или электрохимических параметров (см. например, B. Rohr, H. Wiele, “Lexikon der Technik”, VEB Bibliographisches Institut Leipzig, 1982, стр. 513).

С каждым датчиком 3 могут быть ассоциированы два вспомогательных датчика 4, 4', из которых один обнаруживает превышение заданного вспомогательного порогового значения HSW параметра перед превышением порогового значения SW, а другой вспомогательный датчик 4' обнаруживает спадание ниже другого вспомогательного порогового значения HSW' параметра перед спаданием ниже порогового значения SW. Например, таким образом, может обнаруживаться приближение компонента 2 к положению датчика 3 с двух направлений.


СПОСОБ ФУНКЦИОНИРОВАНИЯ ПРОЦЕССОРА В СРЕДЕ РЕАЛЬНОГО ВРЕМЕНИ
СПОСОБ ФУНКЦИОНИРОВАНИЯ ПРОЦЕССОРА В СРЕДЕ РЕАЛЬНОГО ВРЕМЕНИ
Источник поступления информации: Роспатент

Показаны записи 1 001-1 010 из 1 427.
08.07.2018
№218.016.6de8

Стяжной узел с прижимным элементом

Использование: для создания стяжного узла. Сущность изобретения заключается в том, что стяжной узел содержит сборку из механически стянутых, лежащих стопкой друг над другом компонентов, зажимное приспособление для оказания механического сжимающего усилия на сборку из компонентов, а также...
Тип: Изобретение
Номер охранного документа: 0002660397
Дата охранного документа: 06.07.2018
10.07.2018
№218.016.6f08

Уплотнительный элемент для ступенчатых разделительных швов корпусов редукторов

Изобретение относится к разъемному корпусу для редуктора, в частности для редуктора флюидной машины, например редукторного компрессора, а также к флюидной машине с таким разъемным корпусом. Предусмотренный для размещения в разъемном корпусе (1) редуктор (100) содержит крупногабаритное зубчатое...
Тип: Изобретение
Номер охранного документа: 0002660731
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.6fe9

Устройство и способ динамического регулирования электрической дуговой печи

Изобретение относится к устройству и способу динамического регулирования электрически подключенной к сети электропитания электрической дуговой печи (1) с по меньшей мере одной сетевой фазой, посредством которой на печном электроде прикладывается электрическое переменное напряжение с амплитудой...
Тип: Изобретение
Номер охранного документа: 0002660917
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.702e

Устройство для смазки подшипника качения электродвигателя

Изобретение относится к области электротехники и касается устройства для смазки подшипника качения электродвигателя. Технический результат – улучшение смазки подшипника. Устройство для смазки подшипника качения электродвигателя включает в себя располагаемую на наружной или внутренней стороне...
Тип: Изобретение
Номер охранного документа: 0002660911
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7083

Электрический модуль с зажимным устройством

Изобретение относится к электрическим модулям с электрическими компонентами, в частности стопками компонентов, при которых для сжатия создается зажимное усилие. Технический результат - создание электрического модуля, в котором зажимное усилие для сжатия модуля можно генерировать с очень...
Тип: Изобретение
Номер охранного документа: 0002660921
Дата охранного документа: 11.07.2018
19.07.2018
№218.016.727d

Многоуровневый преобразователь

Изобретение относится к многоуровневому преобразователю (10) с множеством последовательно соединенных суб-модулей (31, 32), которые соответственно имеют первый переключатель (S11, S21), второй переключатель (S12, S22) и конденсатор (C1, C2) и в фазе разряда посредством конденсатора выдают вовне...
Тип: Изобретение
Номер охранного документа: 0002661638
Дата охранного документа: 18.07.2018
24.07.2018
№218.016.73db

Изоляционная система, а также способ монтажа изоляционной системы

Изоляционная система предназначена для электрически изолированной фиксации элемента, например, чтобы размещать фазный провод, который проводит потенциал высокого напряжения относительно несущего элемента, проводящего потенциал земли, на который оперт этот фазный провод. Изоляционная система...
Тип: Изобретение
Номер охранного документа: 0002661912
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.741d

Впускной контур для одновального устройства

Изобретение относится к паровой турбине с впускным кольцевым каналом, который гидравлически соединен с впускным штуцером, причем осуществленный таким образом, что входящий поток сначала замедляется, а затем ускоряется и одновременно изменяет направление. Технический результат: оптимизация...
Тип: Изобретение
Номер охранного документа: 0002661915
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.7426

Возвратная ступень многоступенчатого турбокомпрессора или турборасширителя с шероховатыми поверхностями стенок

Изобретение относится к возвратной ступени (RS) флюидной радиальной турбоэнергомашины, в частности радиального турбокомпрессора (ТСО), с осью (Х) вращения, включающей в себя кольцеобразный проточный канал (СН) для подачи текущего технологического флюида (PF) от проточного отверстия первого...
Тип: Изобретение
Номер охранного документа: 0002661916
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.747a

Привод рельсового подвижного состава, имеющий тормозную систему

Группа изобретений относится к области рельсовых транспортных средств. Привод единицы рельсового подвижного состава содержит два ведущих колеса, вращающихся вокруг оси и соединенных осью колесной пары. Осепараллельно расположен вращающийся вокруг другой оси вал динамоэлектрической машины. Ось...
Тип: Изобретение
Номер охранного документа: 0002662109
Дата охранного документа: 23.07.2018
Показаны записи 941-943 из 943.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
+ добавить свой РИД