×
10.04.2015
216.013.3c92

Результат интеллектуальной деятельности: КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПОРОШКОВОГО МАТЕРИЛА ПРИ ЕГО СЖАТИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области определения электрофизических параметров порошковых материалов, а также к области определения значений параметров, характеризующих физико-химические свойства материалов, по величине электрического сопротивления. Контактное устройство для определения электрического сопротивления порошкового материала при его сжатии содержит измерительную ячейку, включающую изоляционную втулку для размещения в ней образца исследуемого материала, подвижный и неподвижный цилиндрические электроды для сжатия образца и регистрации изменения его сопротивления, выполненные с заходной частью для размещения во втулке; узлы создания и измерения перемещения подвижного электрода. В устройстве новым является то, что узлы создания и измерения перемещения подвижного электрода конструктивно разъединены. При этом чувствительный элемент узла измерения кинематически связан с узлом создания перемещения. Заходная часть каждого электрода выполнена ступенчатой. Ступень, обращенная к образцу, выполнена меньшего диаметра с разгрузочной канавкой на ее наружной поверхности, а ступень большего диаметра выполнена для сопряжения с изоляционной втулкой. При этом длина L втулки, длина l заходной части электродов и длина l сопряженной ступени электродов в исходном состоянии выбраны из определенных геометрических условий. Для обеспечения возможности проведения измерительных операций с образцом порошкового материала, находящегося в инертной среде, измерительная ячейка установлена в герметизирующую трубку. Для улучшения эксплуатационных характеристик контактного устройства, связанных с возможностью визуализации образца и процесса его уплотнения, герметизирующая трубка и изоляционная втулка выполнены прозрачными. Техническим результатом изобретения является повышение точности и расширение диапазона измерений плотности, а следовательно, и повышение точности определения электрического сопротивления исследуемого порошкового материала. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области определения электрофизических параметров порошковых материалов, а также к области определения значений параметров, характеризующих физико-химические свойства материалов, по величине электрического сопротивления, и может найти применение в порошковой металлургии, в изучении процессов самораспространяющегося высокотемпературного синтеза, в материаловедении и физике твердого тела.

Предлагаемое устройство предназначено для определения электрического сопротивления порошковых материалов, в том числе в инертной среде, и основано на ранее известном подходе, используемом в способе определения удельного сопротивления (электропроводности) порошковых материалов [Авторское свидетельство №1540482, МКИ G01N 27/02, «Способ определения электрофизического параметра порошкообразных материалов», опубликовано в БИ №23, 1999] и в способе определения толщины покрытия на частицах порошковых материалов [Авторское свидетельство №1598600, МКИ G01B 7/06, «Способ определения толщины покрытия на частицах порошкообразных материалов», опубликовано в БИ №23, 1999]. В основе принципа, на котором основано применение устройства для реализации способов [АС №1540482, АС №1598600], лежит определение сопротивления (электропроводности) исследуемого образца порошкового материала при контролируемом изменении его плотности путем двухстороннего сжатия (уплотнения) образца, помещенного в изоляционную втулку, между подвижным и неподвижным электродами.

Контактное устройство, схема и краткое описание которого приведены в АС №1598600, содержит измерительную ячейку, включающую изоляционную втулку, в которую помещается исследуемый образец порошкового материала, и подвижный и неподвижный цилиндрические электроды для сжатия образца и регистрации изменения его сопротивления. Электроды выполнены с заходной частью для размещения в изоляционной втулке. В контактное устройство также входят узлы создания и измерения перемещения, реализованные на базе микрометра. В качестве узла создания перемещения использован микрометрический винт, приводимый в движение поворотом барабана. Определенное количество оборотов барабана соответствует определенному перемещению винта, воздействующего на подвижный электрод. Узлом измерения перемещения являются отградуированная шкала, нанесенная на барабане, и метка на неподвижной части устройства. Таким образом, узлы создания и измерения перемещения конструктивно объединены.

В известном техническом решении вращение барабана микрометра на определенное количество делений шкалы не всегда соответствует адекватному осевому перемещению микрометрического винта и электрода. Это создает дополнительную погрешность при достижении относительно большой степени уплотнения, особенно, при достаточно больших усилиях сжатия образца. Кроме того, иногда происходит прокручивание барабана без перемещения подвижного электрода, что приводит к неверным результатам измерения.

Описанное контактное устройство является ближайшим аналогом предлагаемого технического решения. Несомненными достоинствами этого устройства являются его простота, доступность и легкость в проведении измерений при достаточно высокой точности задания и измерения перемещений и, соответственно, плотности образца. К недостаткам устройства можно отнести следующие его особенности.

1. Узкий диапазон уплотняющих усилий, создаваемых вращением микрометрического винта и, соответственно, малая достигаемая степень уплотнения.

2. Сложность обеспечения необходимой точности измерений при достаточно высоких плотностях образца, связанная с погрешностями, определяемыми несовершенством работы совмещенных узлов создания и измерения перемещения.

3. Наличие погрешности определения удельного электрического сопротивления образца, вызванной влиянием продольной разноплотности порошка, а также погрешности, связанной с возможными перекосами электродов в изоляционной втулке с образцом.

4. Отсутствие возможности проведения измерений в инертной среде, что важно при определении сопротивления взаимодействующих с воздушной и влажной средой порошков (например, активных и пирофорных порошковых металлов, гигроскопичных материалов и т.п.). При этом попытка осуществить измерения в инертной среде вызывает необходимость размещения контактного устройства в специальных перчаточных боксах и обеспечения связи с измерительными приборами путем их размещения в камере бокса или с использованием герметизированных электрических вводов (гермовводов), что значительно усложняет проведение измерений и снижает их точность.

Техническая задача, решаемая изобретением, направлена на создание контактного устройства для определения электрического сопротивления порошковых материалов при их сжатии в широком диапазоне уплотняющих усилий, в том числе с возможностью проведения измерений в инертной среде.

Техническими результатами изобретения являются повышение точности и расширение диапазона измерений плотности (степени уплотнения), а следовательно, и повышение точности определения электрического сопротивления исследуемого порошкового материала.

Дополнительными техническими результатами являются обеспечение возможности проведения измерительных операций с образцом порошкового материала, находящегося в инертной среде, и улучшение условий эксплуатации устройства, связанных с возможностью визуализации процесса уплотнения.

Указанные технические результаты достигаются тем, что в предлагаемом контактном устройстве для определения электрического сопротивления порошкового материала при его сжатии, содержащем измерительную ячейку, включающую изоляционную втулку для размещения в ней образца исследуемого материала, подвижный и неподвижный цилиндрические электроды для сжатия образца и регистрации изменения его сопротивления, выполненные с заходной частью для размещения во втулке; узлы создания и измерения перемещения подвижного электрода, новым является то, что указанные узлы конструктивно разъединены, при этом чувствительный элемент узла измерения кинематически связан с узлом создания перемещения, заходная часть каждого электрода выполнена ступенчатой, причем ступень, обращенная к образцу, выполнена меньшего диаметра с разгрузочной канавкой на ее наружной поверхности, а ступень большего диаметра выполнена для сопряжения с изоляционной втулкой, при этом длина L втулки, длина l1 заходной части электродов и длина l2 сопряженной ступени электродов в исходном состоянии выбраны из условий:

где d - внутренний диаметр изоляционной втулки.

Для обеспечения возможности проведения измерительных операций с образцом порошкового материала, находящегося в инертной среде, измерительная ячейка установлена в герметизирующую трубку.

Для улучшения условий эксплуатации контактного устройства, связанных в возможностью визуального наблюдения и контроля за перемещением подвижного электрода и уплотнением образца, герметизирующая трубка и изоляционная втулка выполнены прозрачными.

Повышение точности измерений (плотности и электрического сопротивления) достигается посредством применения компоновочного решения предлагаемого контактного устройства, которое направлено на то, чтобы узел, создающий перемещение, конструктивно отделен от узла устройства, позволяющего измерять это перемещение. При этом отсутствует взаимное влияние указанных узлов друг на друга, приводящее к погрешности измерения перемещения. В этом заключается принципиальное отличие от прототипа.

Заходная часть каждого электрода выполнена ступенчатой, причем ступень, обращенная к образцу, выполнена меньшего диаметра с разгрузочной канавкой на ее наружной поверхности, что снижает усилие, требуемое для перемещения электрода и уплотнения образца, вследствие снижения влияния затирания материала в зазорах между изоляционной втулкой и электродами. Кроме того, такие конструктивные особенности предотвращают закусывание контактов и износ поверхности втулки частицами порошка, что также повышает точность определения электрического сопротивления.

Выполнение составных частей измерительной ячейки с размерами, выбранными исходя из условий (1), обеспечивает хорошее центрирование сборки, в результате чего минимизируются углы перекосов электродов относительно втулки с образцом. Чем больше размер захода по сопряженной ступени электрода во втулку, тем меньше вероятный угол перекоса электродов относительно оси втулки, тем меньше погрешность определения геометрических параметров образца, сказывающихся на определении плотности (степени уплотнения) и удельного электрического сопротивления, а также меньше усилие, необходимое для уплотнения образца. Для исходного состояния электродов, размещенных во втулке, важным является выполнения условия l2≥2d. При движении электродов относительно втулки и уплотнения образца в процессе работы устройства это ограничение не только соблюдается, но и усиливается, обеспечивая закономерное уменьшение угла возможного перекоса электродов относительно оси втулки.

Установка измерительной ячейки в герметизирующую трубку обеспечивает возможность вести подготовку образца и помещение его в измерительную ячейку в инертной атмосфере, например, в перчаточном боксе, и обеспечивает возможность последующего проведения процесса измерения в обычных условиях на воздухе, в то время как образец порошка находится в герметичном объеме с инертной атмосферой. Такой подход избавляет от необходимости размещать измерительные устройства в боксах или использовать гермовводы для соединения электрической измерительной цепи контактного устройства, например, размещенного в боксе, и измерительных приборов снаружи. Важно отметить, что использование подобных гермовводов вносит значительную дополнительную погрешность в определение электрического сопротивления и, тем более, импеданса.

Выполнение изоляционной втулки из оптического кварцевого стекла и герметизирующей трубки из органического стекла обеспечивает возможность визуального контроля над образцом на всех этапах работ. Кроме того, такое выполнение обеспечивает минимальные потери на трение между образцом и стенками втулки в процессе уплотнения, что способствует снижению продольной разноплотности порошкового образца, вызываемой внешним трением.

На фиг.1 представлено схематичное изображение измерительной ячейки предлагаемого устройства.

На фиг.2 показано сечение A фиг.1.

На фиг.3 приведено схематичное изображение одного из вариантов конструктивной компоновки узлов создания и измерения перемещения подвижного электрода предлагаемого контактного устройства.

На фиг.4 схематично изображен общий вид предлагаемого контактного устройства.

Предлагаемое контактное устройство для определения электрического сопротивления порошкового материала при его сжатии, реализующее определение степени уплотнения (относительной плотности) и удельного сопротивления образца через измеряемую длину образца при постоянных значениях массы и диаметра пробы, состоит из следующих основных частей: измерительной ячейки, узлов создания и измерения перемещения подвижного электрода и опорной части.

Измерительная ячейка включает в себя изоляционную втулку 1, в которой размещен образец 2, подвижный 3 и неподвижный 4 цилиндрические электроды, выполненные с заходной частью для размещения во втулке 1, герметизирующую трубку 5 и герметизирующие кольца 6. На противоположных от образца 2 краях электродов 3, 4, выполнены контактные щечки 7 для присоединения электрических проводников для связи с прибором, измеряющим электрическое сопротивление или импеданс (омметром, компаратором сопротивлений, анализатором импеданса и т.п.). В сечении A на фиг.1 и в увеличенном виде на фиг.2 показан ступенчатый характер электродов 3, 4 с разгрузочной канавкой Б. Длина L изоляционной втулки 5, длина l1 заходной части каждого электрода 3, 4 и длина l2 сопряженной ступени каждого электрода 3, 4 в исходном состоянии выбраны из условий (1), полученных опытным путем.

Узел создания перемещения подвижного электрода 3 (фиг.3) состоит из подвижной опоры 8, сопряженной с каналом силовой скобы 9, силового винта 10 и штока 17. Подвижная опора 8 соединена с подвижным электродом 3 через изолятор 18.

Узел измерения перемещения подвижного электрода 3 (фиг.3) состоит из измерительной головки 11, закрепленной в кронштейне 15 с помощью разрезной втулки 13 и винта 14. Чувствительный элемент измерительной головки 11 кинематически связан с узлом создания перемещения за счет опорного контакта с планкой 12, закрепленной на подвижной опоре 8. Кронштейн 15 жестко соединен с силовой скобой 9. При этом выступающая из кронштейна 15 часть втулки 13 предохраняет измерительную головку 11 от повреждения при обратном ходе подвижной опоры 8 после проведения измерений.

Опорная часть объединяет измерительную ячейку 19 (см. фиг.4), узлы создания и измерения перемещения в единое контактное устройство. В опорную часть входят силовая скоба 9 и неподвижная опора 20, соединенная с неподвижным электродом 4 через изолятор 21. К силовой скобе 9 прикреплены ножки 16, позволяющие устанавливать контактное устройство на горизонтальной поверхности. Скоба 9 за счет своей прочной и массивной конструкции обеспечивает компоновку всех основных элементов устройства и является основным силовым элементом, воспринимающим усилия противодействия, возникающие при его работе в процессе перемещения подвижного электрода 3 и уплотнения образца 2, без деформации и изгибов.

Скоба 9 изготовлена из нержавеющей стали. Размеры скобы 9 определены размерами измерительной ячейки 19, длиной рабочего хода и усилий, возникающих в процессе уплотнения образца 2. Электроды 3, 4 также выполнены из нержавеющей стали.

На поверхности отверстий герметизирующей трубки 5 выполнены заходные фаски для монтажа уплотнительных колец 20. В конструкции используются уплотнительные кольца 065 по ОСТ 95 1158-73, которые смазываются кремнийорганической вакуумной смазкой. Внутренняя и наружная поверхности трубки 5 выполнены полированными для обеспечения прозрачности.

Силовой винт 10 выполнен из нержавеющей стали, термообработанной до твердости 30…35HRC. Резьбовая и опорная поверхности винта 10 обработаны до значения Ra 1,25. Поверхность винта 10 при сборке покрыта смазкой. Конструкция винта 10 обеспечивает требуемую нагрузку на образец 2 (не менее ~100 кгс) при воздействии на него усилия от руки (момент не более ~10 кгс·см). Шток 17 обеспечивает возврат подвижной опоры 8 в исходное положение после проведения испытаний.

Изоляторы 18 и 21 выполнены из жесткого капролона в виде стаканчиков и размещены в зазорах между опорами 8, 20 и электродами 3, 4, соответственно. Их высокая жесткость и достаточно большой диаметр сопряжения с опорами обеспечивает минимальные деформации от усилий, возникающих при уплотнении исследуемого образца.

Заявляемое устройство работает следующим образом.

Образец 2 с известной массой и начальной длиной помещается в изоляционную втулку 1 измерительной ячейки 19. После этого в изоляционную втулку 1 устанавливают неподвижный электрод 4, далее герметизирующую трубку 5 и, следом, - подвижный электрод 3. При необходимости все вышеуказанные операции проводят в перчаточном боксе с инертной средой.

Снаряженную измерительную ячейку 19 устанавливают в скобу 9 контактного устройства между подвижной 8 и неподвижной 20 опорами и визуально контролируют наличие контакта электродов 3, 4 с образцом 2. После сборки проводят тестовое измерение электрического сопротивления и при необходимости поджимают образец 2 вращением силового винта 10. Далее цифровым штангенциркулем измеряют расстояние между щечками 7 электродов 3, 4, по которому судят о начальной длине образца 2.

После описанной подготовки проводят цикл измерений электрического сопротивления с постепенным уплотнением образца 2 порошкового материала. Уплотнение образца 2 реализуют при помощи силового винта 10, под действием которого происходит перемещение подвижного электрода 3, приводящее к изменению длины l2 каждого электрода 3, 4 и соответствующему уменьшению длины образца 2. Измерение перемещения обеспечивается цифровой измерительной головкой 11. На основании измеренных значений электрического сопротивления образца 2 и его длины определяют значения удельного сопротивления и относительной плотности (степени уплотнения) образца 2, с учетом которых определяют электрическое сопротивление порошкового материала. Параллельные измерения с образцами одного и того же материала проводят по описанной выше схеме с тем условием, что навески образцов для повторных измерений берутся равными по массе с навеской первого измерения.

Проведенные испытания с использованием предлагаемого контактного устройства показали высокую точность и воспроизводимость результатов измерения при заданной дискретности измерения длины образца в процессе уплотнения, не превышающей 3 мкм, при достигаемом максимальном усилии сжатия 100 кгс с возможностью проведения измерений в инертной среде.


КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПОРОШКОВОГО МАТЕРИЛА ПРИ ЕГО СЖАТИИ
КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПОРОШКОВОГО МАТЕРИЛА ПРИ ЕГО СЖАТИИ
КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПОРОШКОВОГО МАТЕРИЛА ПРИ ЕГО СЖАТИИ
КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПОРОШКОВОГО МАТЕРИЛА ПРИ ЕГО СЖАТИИ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 663.
20.07.2014
№216.012.de37

Пастообразный материал для защиты от нейтронного излучения и способ приготовления пастообразного материала для защиты от нейтронного излучения

Изобретение относится к технологии изготовления материалов для защиты от нейтронного излучения. Пастообразный материал для защиты от нейтронного излучения включает консистентную смазку ВНИИНП-293 и порошкообразный бор аморфный в качестве наполнителя при массовом соотношении компонентов (%)...
Тип: Изобретение
Номер охранного документа: 0002522673
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7a

Способ определения характеристик фугасности (варианты)

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны,...
Тип: Изобретение
Номер охранного документа: 0002522740
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de81

Поглощающий нейтроны материал на основе гафната диспрозия

Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: и его получают путем твердофазного синтеза при температуре 1500-1700°C...
Тип: Изобретение
Номер охранного документа: 0002522747
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de88

Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых...
Тип: Изобретение
Номер охранного документа: 0002522754
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8b

Способ определения коэффициента диффузии в порошковых материалах и способ определения толщины и показателя целостности покрытия на частицах порошковых материалов

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося...
Тип: Изобретение
Номер охранного документа: 0002522757
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb1

Способ определения концентрации изотопного состава молекулярного йода в газах

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с...
Тип: Изобретение
Номер охранного документа: 0002522795
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb3

Устройство для формирования ударно-волнового импульса

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка...
Тип: Изобретение
Номер охранного документа: 0002522797
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb4

Оптико-терагерцовый преобразователь

Изобретение относится к оптико-терагерцовым преобразователям, основанным на преобразовании энергии оптических пучков фемтосекундных импульсных лазеров в энергию рабочего широкополосного терагерцового излучения. Преобразователь содержит рабочий полупроводниковый слой, чувствительный к...
Тип: Изобретение
Номер охранного документа: 0002522798
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def2

Устройство для одновременной трансляции сигналов в оптическом и радиочастотном диапазонах излучения

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности. Для этого устройство...
Тип: Изобретение
Номер охранного документа: 0002522860
Дата охранного документа: 20.07.2014
Показаны записи 131-140 из 486.
20.07.2014
№216.012.de37

Пастообразный материал для защиты от нейтронного излучения и способ приготовления пастообразного материала для защиты от нейтронного излучения

Изобретение относится к технологии изготовления материалов для защиты от нейтронного излучения. Пастообразный материал для защиты от нейтронного излучения включает консистентную смазку ВНИИНП-293 и порошкообразный бор аморфный в качестве наполнителя при массовом соотношении компонентов (%)...
Тип: Изобретение
Номер охранного документа: 0002522673
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7a

Способ определения характеристик фугасности (варианты)

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны,...
Тип: Изобретение
Номер охранного документа: 0002522740
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de81

Поглощающий нейтроны материал на основе гафната диспрозия

Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: и его получают путем твердофазного синтеза при температуре 1500-1700°C...
Тип: Изобретение
Номер охранного документа: 0002522747
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de88

Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых...
Тип: Изобретение
Номер охранного документа: 0002522754
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8b

Способ определения коэффициента диффузии в порошковых материалах и способ определения толщины и показателя целостности покрытия на частицах порошковых материалов

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося...
Тип: Изобретение
Номер охранного документа: 0002522757
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb1

Способ определения концентрации изотопного состава молекулярного йода в газах

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с...
Тип: Изобретение
Номер охранного документа: 0002522795
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb3

Устройство для формирования ударно-волнового импульса

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка...
Тип: Изобретение
Номер охранного документа: 0002522797
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb4

Оптико-терагерцовый преобразователь

Изобретение относится к оптико-терагерцовым преобразователям, основанным на преобразовании энергии оптических пучков фемтосекундных импульсных лазеров в энергию рабочего широкополосного терагерцового излучения. Преобразователь содержит рабочий полупроводниковый слой, чувствительный к...
Тип: Изобретение
Номер охранного документа: 0002522798
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def2

Устройство для одновременной трансляции сигналов в оптическом и радиочастотном диапазонах излучения

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности. Для этого устройство...
Тип: Изобретение
Номер охранного документа: 0002522860
Дата охранного документа: 20.07.2014
+ добавить свой РИД