×
10.04.2015
216.013.3a79

СПОСОБ ИЗГОТОВЛЕНИЯ ПАКЕТОВ ЭЛЕМЕНТОВ ОСТЕКЛЕНИЯ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002546457
Дата охранного документа
10.04.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области строительства, а именно к конструкциям остекления и способам их изготовления. Задачей данного изобретения является разработка улучшенного теплоизолирующего элемента стеклопакета, лишенного недостатков обычных вакуумных стеклопакетов, стеклопакетов, заполненных газом, с пониженной теплопроводностью и стеклоизделий с покрытием из оксида цинка или других материалов с высокой отражательной способностью и стоимостью. Для этого в способе изготовления пакетов элементов остекления ограждающих конструкций зданий, состоящих из листов стекла, устанавливаемых с промежутком между ними, который заполняют газом и герметизируют с установкой по периметру стекла фиксирующих прокладок, покрытых слоем уплотнительной замазки, согласно изобретению заполнение промежутка производят газом, поглощающим тепловое (инфракрасное) излучение, имеющим в своем составе три и более атомов. При подаче газа давление Р и температуру Т газа задают выше этих параметров для окружающей среды для того, чтобы после герметизации промежутка между стеклами за счет остывания газа в промежутке установилось бы давление P=Р, что предотвратит перетекание газа, при этом соотношение начальных и конечных после заполнения параметров должно подчиняться соотношению . В качестве лучепоглощающих газов используют как отдельные лучепоглощающие газы, так и их смеси. При использовании смеси лучепоглощающих газов состав их подбирают таким образом, чтобы, с учетом селективности излучения газов, диапазоны излучения отдельных газов создавали близкий к сплошному спектр излучения, характерный для «серого» тела. Для гарантии заданного состава и вытеснения воздуха из промежутка количество газа подаваемого для заполнения камеры, в 3-4 раза превышает ее объем. 2 з.п. ф-лы, 2 табл., 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области строительства, а именно к конструкциям остекления и способам их изготовления.

В WO 91/02878 и WO 93/15296 предложен вакуумный стеклопакет, состоящий из двух смежных листов стекла, из пространства между которыми откачан воздух. Листы стекла разделены между собой дистанционными прокладками и соединены между собой по периметру слоем герметизирующего материала (уплотнения). Откачка воздуха из межстекольного пространства производится через отверстие в одном из стекол.

Известные вакуумные стеклопакеты до настоящего времени не смогли завоевать рынок. Современными выпускаемыми промышленным способом вакуумными стеклопакетами достигнут неудовлетворительный коэффициент теплопередачи U=1,0 Вт/(м2·К) или ниже, этот параметр сегодня без труда обеспечивают даже традиционные стеклопакеты. И хотя лабораторные исследования показали реальность достижения коэффициента теплопередачи U=0,4 Вт/(м2·K), все же на практике эти результаты ограничивались только мелкими лабораторными образцами. Переход в лабораторных опытах на более крупные форматы изделий от 0,8 м2 и выше до сих пор не удавался. Причина этого кроется в том, что, например, при практическом использовании известных вакуумных стеклопакетов часто имеют место повреждения в виде боя стекла, негерметичности или потери вакуума и т.п., что зачастую может приводить изделие к полной непригодности и отказу в работе. Особенно сильно страдают краевые зоны, находящиеся в соединительном профиле, и особенно в углах. Как оказалось, такие недостатки проявляются обычно на крупногабаритных изделиях площадью не менее 0,4 м2 и прежде всего в более крупных, в то время как в малых лабораторных образцах обычного размера 500×500 мм (площадью до 0,25 м2) такие явления не наблюдались.

Кроме того, обычные вакуумные стеклопакеты по сравнению с традиционными стеклопакетами значительно дороже. До настоящего времени не удалось значительно снизить себестоимость изделий за счет улучшения технологии производства.

В качестве примера повышения теплового сопротивления стеклопакета из патентной документации известны способы нанесения покрытий на наружный лист стекла для обеспечения определенных свойств поглощения энергии и пропускания света для снижения тепловых потерь из помещений зданий.

В патенте US 4751149 описан способ нанесения покрытия из оксида цинка на основу при низкой температуре с использованием смеси цинкорганического соединения и воды в среде инертного газа. Получаемая пленка оксида цинка имеет сравнительно низкое удельное сопротивление, которое можно изменить путем добавления химического элемента III группы Таблицы Д.И. Менделеева (В, Al, Sc).

В патенте US 6071561 описан способ осаждения пленок из оксида цинка с примесью фтора с использованием паров соединений исходных веществ, например хелатадиалкилцинка, в частности, с использованием аминохелата, источника кислорода и источника фтора. Полученные покрытия являются электропроводными, отражают инфракрасное излучение, поглощают ультрафиолетовое излучение и не содержат углерода.

Наиболее близким к заявленному способу является патент RU 2448133, в котором говорится о том, что теплопередача в герметизированных изоляционных стеклопакетах может быть снижена при замене воздуха в герметизированном изоляционном стеклоокне на газ с более низкой теплопроводностью. Подходящие газы должны быть бесцветными, нетоксичными, некорродирующими, негорючими, не разрушающимися под действием ультрафиолетового излучения и более низкопроводными по теплу, чем воздух. Аргон, криптон, ксенон и гексафторид серы являются известными примерами газов, которые обычно являются заменителями воздуха в изоляционных стеклоокнах для снижения энергопереноса теплопроводностью.

Однако при проведении эксперимента с использованием воздуха, дорогостоящего инертного аргона и углекислоты CO2 выявлено, что заполнение камер аргоном почти ничего не дало, а в случае с газом-заполнителем CO2 результат уменьшения теплообмена на 8-10% по сравнению с воздушным заполнителем. Такие результаты приводят к выводу о том, что неправильно были представлены механизмы теплопередачи в случае использования теплопроводности газов как средства управления процессом теплопередачи через стеклопакет.

Задачей данного изобретения является разработка улучшенного теплоизолирующего элемента стеклопакета, лишенного недостатков обычных вакуумных стеклопакетов, стеклопакетов, заполненных газом, с пониженной теплопроводностью и стеклоизделий с покрытием из оксида цинка или других материалов с высокой отражательной способностью и стоимостью.

Сущность изобретения: в способе изготовления пакетов элементов остекления ограждающих конструкций зданий, состоящих из листов стекла, устанавливаемых с промежутком между ними, который заполняют газом и герметизируют с установкой по периметру стекла фиксирующих прокладок, покрытых слоем уплотнительной замазки, согласно изобретению заполнение промежутка производят газом, поглощающим тепловое (инфракрасное) излучение, имеющим в своем составе три и более атомов. При этом при подаче газа давление P1 и температуру T1 газа задают выше этих параметров для окружающей среды для того, чтобы после герметизации промежутка между стеклами за счет остывания газа в промежутке установилось бы давление P1=Pатм, что предотвратит перетекание газа, при этом соотношение начальных и конечных после заполнения параметров должно подчиняться соотношению .

В качестве лучепоглощающих газов используют как отдельные лучепоглощающие газы, так и их смеси. При использовании смеси лучепоглощающих газов состав их подбирают таким образом, чтобы, с учетом селективности излучения газов, диапазоны излучения отдельных газов создавали близкий к сплошному спектр излучения, характерный для «серого» тела. Для гарантии заданного состава и вытеснения воздуха из промежутка количество газа, подаваемого для заполнения камеры, в 3-4 раза превышает ее объем

На фиг. 1 изображен оконный стеклопакет с улучшенной теплоизоляционной способностью, содержащий два отстоящих друг от друга листа стекла в пространственном отношении друг к другу, с газовой прослойкой между ними. На фиг. 2 представлена зависимость приведенной степени черноты от степени черноты газа

Для анализа условий теплообмена были произведены расчеты с целью определения составляющих теплопередачи через пакет в прослойке между стеклами. Определялись тепловые потоки при заполнении полости между стеклами разными газами.

Таблица 1

Расчеты были проведены при обработке опытных замеров δ=14·10-3 м, Δt=8°C - разница температур между стеклами. Тепловым сопротивлением самих стекол ввиду его малости пренебрегаем.

Как показали расчеты, доля лучистого теплообмена является довольно значительной, и поэтому тепловое сопротивление окон лучше всего изменять за счет излучения.

Теоретическое решение задачи лучистого теплообмена представляется уравнением:

где C0=5,77 Вт/(м2·К4) - коэффициент излучения абсолютно черного тела;

T1 и T2 - абсолютные температуры каждого из стекол, К;

εпр - приведеная степень черноты.

Именно это величина содержит характеристику поглощающих свойств газового слоя.

Для случая εг=0 (отсутствие поглощения газом):

,

При наличии поглощающего газа:

.

Сравнение этих двух случаев можно провести, используя отношение этих величин, т.е. , что в развернутом виде представлено выражением:

.

Если , то это будет означать, что лучепоглощающая среда будет уменьшать тепловой поток, и наоборот.

Ниже в таблице 2 приводятся результаты расчетов величины для различных газов.

Таблица 2 - Расчет сравнительной степени черноты

Как видно из приведенных данных, увеличение степени черноты газа, заполняющего прослойку между стеклами, ведет к снижению приведенной степени черноты системы и, следовательно, к снижению интенсивности лучистого теплообмена. Особенно наглядно эта связь представлена на графике (фиг. 2), построенном по результатам расчетов.

Приведенный график можно интерпретировать зависимостью:

, при этом ошибка будет составлять 0,7%.

Для проверки справедливости такой интерпретации проведем контрольный расчет в двух точках:

εг=0,2; ; ,

εг=0,9; ; .

Таким образом, введение в прослойку поглощающего «парникового» газа должно снижать тепловые потоки через стеклопакет. К таким газам, поглощающим тепловое инфракрасное излучение, относятся газы, имеющие в своем составе более трех атомов, например, CO2, SO2, CH4, фреоны и др. Поскольку газы отличаются селективностью излучения, т.е. наличием излучения и поглощения только в каких-то характерных для данного газа диапазонах длин волн, и в газовых смесях действует правило парциальности действия и аддитивности (слагаемости) величин эффектов отдельных газов, то целесообразно окна заполнять смесями поглощающих газов. При этом их состав нужно подбирать так, чтобы диапазоны излучения газов не совпадали, а в сумме давали бы спектр излучения, близкий к сплошному спектру излучения твердого «серого» тела.

При заполнении газом необходимо добиться вытеснения воздушного объема из промежутка между стеклами, иначе эффект поглощения будет снижен за счет снижения доли парциального давления в объеме промежутка. Для гарантии полного вытеснения, как показывает опыт, достаточно прокачать объем газа, превышающий объем воздушной прослойки в 3-4 раза.

Для обеспечения герметичности в процессе службы окон в них необходимо создать давление, близкое к атмосферному, что исключит процесс перетекания. Вместе с тем для продувки в камере (промежутке) окна необходимо держать давление выше атмосферного. Для выполнения этих противоречащих друг другу требований, необходимых для нормальной работы окна с заполнением поглощающим газом, предлагается при продувке держать избыточное давление в камере около 10 кПа или 0,1 атм (абсолютное давление P1=110 кПа), при этом температура газа должна составлять 40-50°C или 310-320 K. После заполнения камеры пружинные клапаны отсекают объем камеры, фиксируя ее объем.

При постоянном объеме, что характерно для газовой прослойки, давление и температура связаны соотношением, вытекающим из известного закона Бойля-Мариотта

где T1 и P1 - температура и давление газа сразу после заполнения,

T2 и P2 - температура и давление газа после остывания газа через некоторое время, когда возникнут рабочие условия службы окон в целом и газозаполненной камеры в частности.

При работе окон температура газа в камере окна может быть определена на основе практических данных зимой t2~0°C и летом 25°C. Если принять среднюю за год температуру t2=17°C (T2=290 K), то тогда из закона Бойля-Мариотта

что дает ,

что соответствует барометрическому давлению воздушной среды. При этом не будет перепада давлений между давлением газа в камере окна и снаружи ее, что исключит возможное перетекание газа.

Аналитический расчет лучистых тепловых потоков был произведен для четырех газов: углекислота, аммиак, метан и пропан-бутан. Здесь четко выявилась тенденция к уменьшению тепловых потоков от одного стекла к другому при введении так называемых «парниковых» газов.

Экспериментальную проверку гипотезы удалось в полной мере провести только для углекислоты и метана.

Результаты опытов показали, что введение CO2 в качестве заполнителя пространства между стеклами дало снижение тепловых потоков на 8-10%, а для метана - на 10-12%.

Изобретение позволяет уменьшить тепловые потери через элементы остекления зданий. Теплоизолирующий элемент остекления содержит систему листов стекла, первый из которых является наружным стеклом, второй - внутренним. Пространство между листами стекла заполнено лучепоглощающим газом, в частности многоатомным, который, в свою очередь, увеличивает сопротивление теплопередаче.


СПОСОБ ИЗГОТОВЛЕНИЯ ПАКЕТОВ ЭЛЕМЕНТОВ ОСТЕКЛЕНИЯ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ
СПОСОБ ИЗГОТОВЛЕНИЯ ПАКЕТОВ ЭЛЕМЕНТОВ ОСТЕКЛЕНИЯ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ
СПОСОБ ИЗГОТОВЛЕНИЯ ПАКЕТОВ ЭЛЕМЕНТОВ ОСТЕКЛЕНИЯ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
26.08.2017
№217.015.d4b7

Газовая плоскопламенная горелка со встроенным радиационным рекуператором

Изобретение относится к горелочным устройствам тепловых агрегатов, используемых в различных отраслях промышленности. Газовая плоскопламенная горелка со встроенным радиационным рекуператором содержит дымовую трубу, воздушную трубу, газовую трубу с отверстиями для выхода газа. Прямая дымовая...
Тип: Изобретение
Номер охранного документа: 0002622357
Дата охранного документа: 14.06.2017
Показаны записи 1-2 из 2.
26.08.2017
№217.015.d4b7

Газовая плоскопламенная горелка со встроенным радиационным рекуператором

Изобретение относится к горелочным устройствам тепловых агрегатов, используемых в различных отраслях промышленности. Газовая плоскопламенная горелка со встроенным радиационным рекуператором содержит дымовую трубу, воздушную трубу, газовую трубу с отверстиями для выхода газа. Прямая дымовая...
Тип: Изобретение
Номер охранного документа: 0002622357
Дата охранного документа: 14.06.2017
27.05.2019
№219.017.61e6

Способ повышения энергоэффективности паросиловой установки и устройство для его осуществления

Способ может быть использован в области энергетики на тепловых электрических станциях (ТЭС) и атомных электрических станциях (АЭС) при утилизации низкопотенциальной теплоты циркуляционной воды тепловым насосом с целью повышения энергоэффективности. Утилизацию низкопотенциальной теплоты от...
Тип: Изобретение
Номер охранного документа: 0002689233
Дата охранного документа: 24.05.2019
+ добавить свой РИД