×
10.04.2015
216.013.36bb

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ НАРУЖНОГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

№ охранного документа
0002545499
Дата охранного документа
10.04.2015
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого решения является расширение диапазона измерения. Технический результат достигается тем, в способе определения наружного объема цилиндрического изделия, использующим взаимодействие электромагнитных волн с контролируемым изделием, предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют корреляционные функции составляющих принятых первой и второй пар поляризованных волн, и объем изделия V определяют по формуле где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волны; Δn - разность показателей преломления волн; t - время распространения поляризованной волны по линии диаметра цилиндрического изделия (первой и второй пар поляризованных волн), t - время распространения поляризованной волны по линии высоты цилиндрического изделия (первой и второй пар поляризованных волн). 1 ил.
Основные результаты: Способ определения наружного объема цилиндрического изделия, путем использования взаимодействия электромагнитных волн с контролируемым изделием, отличающийся тем, что предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют взаимно-корреляционные функции составляющих принятых первой и второй пар поляризованных электромагнитных волн и объем V изделия определяют по формуле ,где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волн при отсутствии приложенных электрических полей; Δn - разность показателей преломления волн из-за анизотропии изделия; t - время распространения поляризованной волны по линии диаметра цилиндрического изделия, t - время распространения поляризованной волны по линии высоты цилиндрического изделия.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ измерения геометрических размеров различных изделий, реализуемый устройством (см. С.С. Савицкий «Методы и средства неразрушающего контроля», Минск, 2012 г., стр.180-182), содержащим в качестве чувствительного элемента короткозамкнутую катушку, в которой индуцируются вихревые токи. Согласно принципу действия этого устройства контролируемый объект помещают в электромагнитное поле катушки, которая питается переменным электрическим током. Измерение силы вихревых токов в данном случае дает возможность получить информацию о величине геометрического размера изделия.

Недостатком этого известного способа является погрешность, связанная с изменением магнитных свойств сердечника катушки и ее обмотки из-за температурных влияний.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения геометрического размера изделия, реализуемый устройством, содержащим в виде чувствительного элемента измерительный резонатор (см. С.С. Савицкий. «Методы и средства неразрушающего контроля», Минск, 2012 г., стр.57-59). Согласно этому устройству предварительно резонатор возбуждают электромагнитными колебаниями и потом в резонатор помещают контролируемое изделие. По измерению собственной резонансной частоты резонатора судят об изменении геометрического размера контролируемой среды.

Недостатком этого способа можно считать ограниченность диапазона измерения из-за зависимости объема измерительного резонатора от геометрических размеров контролируемой среды.

Техническим результатом заявляемого решения является расширение диапазона измерения.

Технический результат достигается тем, что в способе определения наружного объема цилиндрического изделия, использующим взаимодействие электромагнитных волн с контролируемым изделием, предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют взаимно-корреляционные функции составляющих принятых первой и второй пар поляризованных волн и объем изделия V определяют по формуле:

,

где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волн при отсутствии приложенных электрических полей; Δn - разность показателей преломления волн из-за анизотропии изделия; tpd - время распространения поляризованной волны по линии диаметра цилиндрического изделия (первой и второй пар поляризованных волн, tph - время распространения поляризованной волны по линии высоты цилиндрического изделия (первой и второй пар поляризованных волн).

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании искусственно поляризованного цилиндрического изделия первой и второй ортогонально направленными электромагнитными волнами вычисление корреляционных функций принятых первой и второй пар ортогонально поляризованных волн дает возможность определить наружный объем цилиндрического изделия.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить поставленною задачу определения наружного объема цилиндрического изделия на основе образования искусственной поляризации и вычисления корреляционных функций принятых первой и второй пар ортогонально поляризованных волн с желаемым техническим результатом, т.е. расширением диапазона измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит первый электрод первого электрического поля 1, первый источник излучения 2, первый приемник 3, второй приемник 4, соединенный с первым входом первого коррелятора 5, первый электрод второго электрического поля 6, второй источник излучения 7, третий приемник 8, второй электрод второго электрического поля 9, второй коррелятор 10, соединенный вторым входом с четвертым приемником 11, второй электрод первого электрического поля 12 и вычислитель 13. На чертеже цифрой 13 обозначено цилиндрическое изделие.

Суть предлагаемого способа заключается в следующем. В природе известны вещества, обладающие свойством анизотропии, и вещества, не обладающие этим свойством. Данный способ предусматривает измерение наружного объема цилиндрического изделия, не обладающего анизотропией.

Из теории анизотропных веществ известно, что при локации (облучении) анизотропного вещества электромагнитной волной, благодаря анизотропии, в веществе формируются ортогонально поляризованные волны, распространяющихся по веществу с разными скоростями. Ввиду того, что данное техническое решение направлено на измерение объема неанизотропного изделия, предварительно для приобретения контролируемым изделием анизотропией его необходимо поместить в электрическое поле.

Согласно данному способу изделие помещают в первое и второе электрические поля, силовые линии которых взаимно перпендикулярны. После этого искусственно анизотропное контролируемое изделие зондируют первой и второй электромагнитными волнами, силовые линии электромагнитных полей которых взаимно перпендикулярны. В результате все этого получаем первую и вторую пару ортогонально поляризованных волн, распространяющихся по веществу с разными скоростями из-за эффекта двойной искусственной поляризации в веществе.

Обозначим первой парой ортогонально поляризованных двух волн, обусловленных вследствие приложенного к изделию первого электрического поля и зондирования вещества первой электромагнитной волной, а второй - за счет приложенного к изделию второго электрического поля и зондирования изделия второй электромагнитной волной.

В рассматриваемом случае, если предположить, что силовые линии первой электромагнитной волны совпадают (параллельны) с силовыми линиями первого электрического поля и они направлены по линии высоты цилиндрического изделия, то в этом случае из-за анизотропии одна составляющая первой пары анизотропных волн будет распространяться по линии высоты цилиндрического изделия, а вторая - по линии диаметра цилиндрического изделия, т.е. будем иметь ортогонально поляризованных двух волн. При этом составляющая, распространяющаяся параллельно силовым линиям первого электрического поля, будет отставать в скорости распространения от составляющей, распространяющейся перпендикулярно силовым линиям первого электрического поля.

При приложении к уже искусственно анизотропному первым электрическим полем, цилиндрическому изделию и зондированному первой электромагнитной волной второго электрического поля и зондирования этого изделия второй электромагнитной волной с учетом выше приведенных условий ортогональности силовых линий, как электрических полей, так и электромагнитных полей первой и второй волн, можно указать на существование второй пары ортогонально поляризованных волн (силовые линии второго электрического поля параллельны силовым линиям второй электромагнитной волны). При этом составляющая из этой пары, распространяющаяся параллельно силовым линиям второго электрического поля (по линии диаметра цилиндрического изделия), будет отставать в скорости распространения от составляющей, распространяющейся перпендикулярно силовым линиям второго электрического поля (по линии высоты цилиндрического изделия).

В данном случае для времен распространения ортогонально поляризованных первой и второй пар электромагнитных волн можно записать:

t1h=h/υ1; t1d=d/υ2;

t2h=h/υ2; t2d=d/υ1,

где t1h и t1d - времена распространения первой пары ортогонально поляризованных волн; th2 и t2d - времена распространения второй пары ортогонально поляризованных вол; h - высота цилиндрического изделия; d - диаметр цилиндрического изделия; υ1 - скорость распространения поляризованных волн, распространяющихся параллельно силовым линиям первого и второго электрических полей; υ2 - скорость распространения поляризованных волн, распространяющихся перпендикулярно силовым линиям первого и второго электрических полей. При этом из-за двойной анизотропии в контролируемом цилиндрическом изделии скорость υ2 опережает скорость υ1. Следовательно, для скоростей υ1 и υ2 можно написать:

υ1=c/n; υ2=c/nΔn,

где c - скорость распространения электромагнитных волн в свободном пространстве, n - показатель преломления волн при отсутствии проложенных электрических полей, Δn - разность показателей преломления волн из-за анизотропии изделия (Δn=rn3Eвн/2, где r - линейный электрооптический эффект, Eвн - напряженность внешнего электрического поля). С учетом последних формул выражения (1) могут быть переписаны как t1h=hn/c; t1d=dnΔn/c;t2h=hnΔn/c; t2d=dn/c.

В рассматриваемом случае допускается, что h>d. Кроме того, принимается, что характеристики приложенных к изделию первого и второго электрических полей и зондируемых изделие первой и второй электромагнитных волн одинаковы.

Определение наружного объема данного цилиндрического изделия согласно предлагаемому техническому решению сводится к определению высоты и диаметра (радиуса) цилиндрического изделия. Для этого предложено использование взаимно-корреляционной обработки сигналов, описывающих зависимости времен распространения ортогонально поляризованных первой и второй пар электромагнитных волн от диаметра, высоты цилиндрического изделия и показателя преломления (n) и разности показателей преломления (Δn) электромагнитных волн.

Для определения высоты цилиндрического изделия корреляционно обрабатываются сигналы, имеющие виды: t1h=hn/c и t2h=hnΔn/c. Здесь так как t2h>t1h, то с учетом теории взаимно-корреляционных двух функций, для того чтобы найти отставание во времени между этими сигналами, надо задержать во времени опережающий сигнал, т.е. t2h. Тогда временное отставание, определяемое посредством корреляционной обработки, должно удовлетворить условие:

tph=hn(Δn-1)/c,

где tph - отставание во времени t1h от t2h, измеренное после корреляционной обработки. В результате решение последней формулы по h дает возможность вычислить высоту следующим образом:

.

Аналогичным образом после корреляционной обработки сигналов, соответствующих t1d и t2d, можно сначала измерить временное отставание между этими сигналами tpd, а затем вычислить диаметр цилиндрического изделия как

.

Совместное решение уравнений (1) и (2) с учетом особенности измерения цилиндрических изделий дает возможность определить наружный объем V цилиндрического изделия по формуле:

.

В предлагаемом техническом решении двойная искусственная анизотропия цилиндрического изделия 13 организуется первым 1, вторым 12 электродами первого электрического поля и первым 6, вторым 9 электродами второго электрического поля. После этого изделие зондируют одновременно электромагнитными колебаниями первого источника излучения 2 и второго источника излучения 7. При этом местом ввода электромагнитных колебаний в изделие следует выбрать край изделия таким образом, чтобы образованные ортогонально поляризованные волны распространялись по линиям высоты и диаметра цилиндрического изделия. Далее составляющие из первой пары ортогонально поляризованных волн принимаются вторым 4 и четвертым 11 приемниками. Составляющие из второй пары ортогонально поляризованных волн, принимаются третьим 8 и первым 3 приемниками. Выходной сигнал второго приемника, улавливающего составляющую из первой пары поляризованных волн с силовыми линиями, перпендикулярными с силовыми линями первой зондирующей волны, поступает на первый вход первого коррелятора 5. На второй вход первого коррелятора подают выходной сигнал третьего приемника, улавливающего составляющую из второй пары поляризованных волн с силовыми линиями, параллельными с силовыми линиями второго электрического поля. Выходной сигнал первого приемника, улавливающего составляющую из второй пары поляризованных волн с силовыми линиями, перпендикулярными с силовыми линиями второй зондирующей волны, подают на первый вход второго коррелятора 10. На второй вход второго коррелятора поступает выходной сигнал четвертого приемника, улавливающего составляющую из первой пары поляризованных волн с силовыми линиями, параллельными с силовыми линиями первой зондирующей волны. Выходные сигналы первого и второго корреляторов соответственно поступают на первый и второй входы вычислителя 13, где отражается информация об определении наружного объема цилиндрического изделия.

Таким образом, на основе взаимно-корреляционных обработок двух пар ортогонально поляризованных волн, возникающих в цилиндрическом изделии за счет его двойной искусственной анизотропии, можно обеспечить расширение диапазона измерения геометрического размера контролируемой среды.

Способ определения наружного объема цилиндрического изделия, путем использования взаимодействия электромагнитных волн с контролируемым изделием, отличающийся тем, что предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют взаимно-корреляционные функции составляющих принятых первой и второй пар поляризованных электромагнитных волн и объем V изделия определяют по формуле ,где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волн при отсутствии приложенных электрических полей; Δn - разность показателей преломления волн из-за анизотропии изделия; t - время распространения поляризованной волны по линии диаметра цилиндрического изделия, t - время распространения поляризованной волны по линии высоты цилиндрического изделия.
СПОСОБ ОПРЕДЕЛЕНИЯ НАРУЖНОГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 282.
29.04.2019
№219.017.3e20

Сверхвысокочастотный измеритель электрических величин

Изобретение относится к области электрических измерений и может быть использовано в измерительной технике для измерения токов и напряжений. Сущность заявленного технического решения заключается в том, что в сверхвысокочастотный измеритель электрических величин, содержащий источник переменного...
Тип: Изобретение
Номер охранного документа: 0002686452
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.3e2c

Способ калибровки расходомера газа

Изобретение относится к области измерительной техники и предназначено для использования в системах измерения расхода газообразных сред. По способу калибровки расходомеров газа используется уменьшение погрешности измерения структурным способом в схеме измерения с отрицательной обратной связью с...
Тип: Изобретение
Номер охранного документа: 0002686451
Дата охранного документа: 25.04.2019
02.05.2019
№219.017.4863

Бесконтактный способ измерения пройденного пути

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный...
Тип: Изобретение
Номер охранного документа: 0002686674
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.489c

Способ измерения вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический...
Тип: Изобретение
Номер охранного документа: 0002686676
Дата охранного документа: 30.04.2019
10.05.2019
№219.017.5150

Способ удаления гололеда с проводов линии электропередачи

Использование: в области электроэнергетики для защиты проводов линии электропередачи от гололеда. Технический результат - упрощение процесса нагрева проводов линии электропередачи теплотой. Способ удаления гололеда с проводов линии электропередачи включает нагрев проводов линии электропередачи...
Тип: Изобретение
Номер охранного документа: 0002687247
Дата охранного документа: 08.05.2019
10.05.2019
№219.017.516d

Способ и система для быстрого измерения интервалов времени переноса сигнала между подвижными объектами и центром ретрансляции сообщений

Изобретение относится к разделу вычислительной техники. Техническим результатом способа является уменьшение времени определения максимальной удаленности объектов T. Способ быстрого измерения интервалов времени переноса сигнала между подвижными объектами и центром ретрансляции сообщений CRC:...
Тип: Изобретение
Номер охранного документа: 0002687222
Дата охранного документа: 07.05.2019
17.05.2019
№219.017.5332

Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе

Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин. Техническим результатом является упрощение процедуры измерения плотности бурового раствора. В...
Тип: Изобретение
Номер охранного документа: 0002687710
Дата охранного документа: 15.05.2019
20.05.2019
№219.017.5d34

Привязной аэростат

Изобретение относится к области летно-подъемных радиотехнических средств. Привязной аэростат содержит двояковыпуклую оболочку 1 с легким газом, контейнер 11 с аппаратурой, тросовой разводкой 12 и ветропривод с электрическим генератором, питающим аппаратуру в контейнере. Привязной аэростат...
Тип: Изобретение
Номер охранного документа: 0002688115
Дата охранного документа: 17.05.2019
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7628

Датчик давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002690971
Дата охранного документа: 07.06.2019
Показаны записи 191-191 из 191.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД