×
10.04.2015
216.013.36b4

Результат интеллектуальной деятельности: УСТРОЙСТВО ПОЛУПРОВОДНИКОВОГО СВЕТОДИОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, устройствам полупроводниковых светодиодов. В устройстве полупроводникового светодиода, излучающего через рассеивающую поверхность прозрачной пластины и содержащего в ней светогенерирующую область, в соответствии с изобретением, на поверхности пластины в качестве рассеивателя закреплен слой прозрачных частиц с большим, чем у окружающей среды, показателем преломления и меньшим длины волны зазором между частицей и поверхностью. Изобретение обеспечивает возможность создания конструкции светодиода с увеличенной эффективностью вывода излучения из объема кристалла и возможностью его изготовления по более простой технологии. 3 з.п. ф-лы, 4 ил.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к устройствам полупроводниковых светодиодов.

При создании полупроводниковых светодиодов существует проблема обеспечения эффективного выхода излучения из объема светоизлучающего кристалла в окружающую среду. Эффективность не высока в связи со значительным отражением света от поверхности кристалла, обычно изготовленного из полупроводника с высоким значением показателя преломления. Вследствие эффекта полного внутреннего отражения лучи, падающие на поверхность изнутри кристалла под углами больше критического угла полного отражения, возвращаются в кристалл; через гладкую поверхность кристалла выходит менее 5% возникшего в кристалле излучения. Предложено несколько вариантов конструкции светодиодов с повышенной внешней квантовой эффективностью за счет создания рельефа на выходной поверхности излучающего полупроводникового кристалла.

В качестве аналога выбрана конструкция светодиода EZBrightTM компании Cree, представленная в работе [А.Г. Полищук, А.Н. Туркин. Новое поколение светодиодов компании Cree для освещения. Автоматизация в промышленности. Июль 2009]. Излучающая структура слоев GaN и его твердых растворов эпитаксиально выращена на SiC подложке толщиной 100 мкм; после формирования излучающей структуры SiC подложка стравливается через маску до 35 мкм с образованием упорядоченной микролинзовой системы, которая обеспечивает собирание светового потока с поверхности структуры.

Недостатком аналога является необходимость прибегать для формирования рельефа к фотолитографии и глубокому травлению полупроводниковой пластины в ходе изготовления кристалла, сложность технологии создания рельефа.

В работе [И.П. Смирнова и др. Увеличение квантовой эффективности флип-чип AlGaInN-светодиодов путем реактивного ионного травления внешней стороны подложек SiC // ФТП. - 2010. - Т.44, вып.5. - С.684-687] описана конструкция светодиода, выбранная в качестве прототипа представленного изобретения: на внешней стороне прозрачных подложек имеется рельеф из материала подложек в виде беспорядочно и случайно расположенных выступов и впадин с характерными размерами меньше длины волны излучаемого света; представлен метод создания рассеивающего свет микрорельефа на внешней стороне подложек SiC для уменьшения потерь при выводе света из светодиодного кристалла, связанных с эффектом полного внутреннего отражения в структурах AlGaIn/GaN. Предложено использовать тонкие слои фоторезиста в качестве случайных масок для процесса реактивного ионного травления подложки из карбида кремния. Получающийся рельеф имеет характер беспорядочно расположенных микроразмерных выступов и впадин из материала полупроводниковой подложки кристалла на ее выходной поверхности. Оптимизацией режимов травления на поверхности подложки SiC получен микрорельеф с требуемыми параметрами, что привело к увеличению внешней квантовой эффективности светоизлучающих кристаллов более чем на 25%.

Недостатком прототипа является сложность технологии получения рельефа.

Задачей, решаемой в данном изобретении, является создание конструкции светодиода с увеличенной эффективностью вывода излучения из объема кристалла и возможностью его изготовления по более простой технологии.

Задача решается тем, что в устройстве полупроводникового светодиода, излучающего через рассеивающую поверхность прозрачной пластины и содержащего в ней светогенерирующую область, в соответствии с изобретением на поверхности пластины в качестве рассеивателя закреплен слой прозрачных частиц с большим, чем у окружающей среды, показателем преломления и меньшим длины волны зазором между частицей и поверхностью.

Предлагается также, что размеры частиц сравнимы с длиной волны света в среде и больше ее.

Предлагается также, что слой частиц расположен в приповерхностной зоне шириной меньше длины волны и частицы имеют поперечник с размерами меньше длины волны в среде.

Предлагается также, что закрепление частиц выполнено слоем прозрачного полимера.

Предложенное устройство поясняется с помощью фигур 1, 2, 3 и 4.

На фигуре 1 показано устройство светодиода. Здесь 1 - подложка кристалла светодиода, 2 - частицы на поверхности 3 подложки, n1, n2 - показатели преломления окружающей среды и подложки кристалла.

На фигуре 2 - поверхность пластины кристалла светодиода с микрочастицами и ход лучей при прохождении излучения через поверхность. Здесь 4 - микрочастицы на поверхности, 5 - падающие на частицы изнутри подложки лучи, 6 и 7 - преломленный после однократного отражения от грани частицы луч и после двукратного отражения, n3 - показатель преломления частиц на поверхности.

На фигуре 3 - поверхность пластины кристалла светодиода с наночастицами в зоне туннелирования электромагнитной волны при полном внутреннем отражении света на поверхности и ход лучей при прохождении излучения через поверхность. Здесь 8 - слой среды с показателем преломления n4, в которую погружены наночастицы, 9 и 9′ - падающие под углом больше критического угла падения и отраженные от поверхности лучи, 10 и 11 - рассеянные наночастицей лучи внутрь подложки и в окружающее пространство, d - толщина слоя 8, h - толщина зоны туннелирования света.

На фигуре 4 - схема расположения прозрачного слоя полимера, скрепляющего частицы с поверхностью кристалла светодиода. Здесь 12 - скрепляющий прозрачный слой, имеющий показатель преломления n4.

При подключении светодиода к электрической цепи при помощи электродов катода и анода в зоне, содержащей слои InGaN, возникает излучение; направления распространения лучей ламбертовское, равномерное в пределах телесного угла 4πср. На выходную поверхность 3 кристалла 1 лучи падают под всеми возможными углами. Вследствие эффекта полного внутреннего отражения проходит через гладкую плоскую поверхность менее 5% возникшего светового потока. Наличие частиц с показателем преломления, большим показателя окружающей среды, приводит к рассеянию падающего на частицу света, если зазор между частицей и поверхностью меньше длины волны света в среде.

На фигуре 2 показано, что при отсутствии зазора или малом зазоре частица - поверхность лучи 5 изнутри подложки 1 проникают в частицы 4 и при падении на грани частицы изнутри преломляются в окружающую среду, отраженное от грани излучение повторно попадет на грань частицы и может вновь испытать преломление с выходом в окружающую среду. Таким образом, наличие частиц на поверхности увеличивает выход излучения из кристалла светодиода. Размеры частиц в рассматриваемом случае могут быть сравнимы с длиной волны или быть больше длины волны. Конфигурация частиц может быть произвольной, однако поверхность соприкосновения частицы и кристалла должна пропускать излучение из кристалла в частицу. Частица должна быть или припечена к поверхности, при этом величина зазора минимизируется вследствие частичного расплавления частицы или подложки или прохождения диффузионных процессов при повышенной температуре припекания, или приклеена к поверхности прозрачным клеем, затекающим также в зазоры. Клей должен быть прозрачным и в оптимальном случае иметь показатель преломления, близкий показателю частицы и подложки или больший.

На фигуре 3 на поверхности подложки 1 расположены наночастицы с размерами менее длины волны света в среде. Показанные кружочками наночастицы располагаются в зоне шириной h туннелирования световой волны, падающей изнутри кристалла светодиода на выходную поверхность. Закрепление частиц на поверхности может быть произведено прозрачным слоем 8 толщиной d, показатель преломления которого должен быть меньше или больше показателя наночастиц (иначе не будет рассеяния света на наночастицах). Туннелирующие лучи 9-9′ проникают за поверхность подложки и возвращаются в подложку. Проходя во внешней среде некоторое расстояние вдоль поверхности. Они могут подвергаться рассеянию на наночастицах, давая лучи 10. направленные в подложку, и лучи 11, направленные от подложки. Таким образом, туннелирующие лучи дают вклад в увеличение внешней квантовой эффективности светодиода.

На фигуре 4 микрочастицы 4 приклеены полимерным слоем 12 к подложке 1. Полимерный слой может заполнять всю поверхность подложки или быть только под частицей; в последнем случае полимер может быть нанесен на частицы предварительно, до их распределения по поверхности.

Проведем оценку эффективности вывода излучения из светодиода за счет механизма рассеяния света на наночастицах в зоне туннелирования. Весь поток излучения, падающего изнутри диэлектрика с высоким показателем преломления на границу раздела со средой с низким значением показателя преломления под углами более критического угла полного внутреннего отражения, временно оказывается в среде вне диэлектрика, затем возвращается в диэлектрик.

Амплитуда E электрической компоненты световой волны в области туннелирования определяется уравнением:

E=E0exp(-y/dTE),

где y - расстояние от поверхности, dTE - расстояние, на котором амплитуда уменьшается в e раз от значения на поверхности. Уменьшение интенсивности I световой волны на расстоянии x от поверхности определяется формулой:

I/I0=(E/E0)2=exp(-2y/dTE),

I0 - интенсивность излучения, падающего на поверхность, dTE=1/αx; здесь ,

где , , θ2 - угол падения излучения на выходную поверхность изнутри кристалла.

Подсчет дает значения dTE=48 нм и lx=96 нм при использовании карбида кремния (n2=2,55) и угле падения 450.

Ширина зоны туннелирования dTE достаточна для размещения в ней наночастиц. Наночастицы будут возмущать электромагнитное поле в этой зоне; оценки показывают, что наночастицы увеличивают ширину зоны.

Излучение проходит в адсорбированном на поверхности слое наночастиц путь lx (сдвиг луча Гооса-Генхена):

lx=2dTEtgθ,

где θ - угол падения излучения на поверхность.

Наночастицы заполняют собой зону туннелирования; зона туннелирования может представлять собой слой диэлектрика с показателем преломления, меньшим чем у кристалла светодиода, или поверхностный слой окружающей среды, например воздуха. Излучение взаимодействует с частицами в зоне туннелирования, свет может подвергаться рассеянию. Рассеянный частицей свет может распространяться во все стороны в пределах телесного угла 4π рад; угол рассеяния и коэффициент рассеяния зависят от соотношения размера частицы и длины волны излучения.

В случае прозрачных частиц сечение рассеяния излучения частицей во всех направлениях σp (суммарный поток электромагнитной энергии, рассеянный частицей во всех направлениях, отнесенный к единице интенсивности падающего потока) равно:

σpa 2K(ρ)

Для частиц карбида кремния радиусом 35-70 нм K(ρ)=0,07-1.

Используя полученные величины, можно найти, что если наночастицы располагаются на поверхности подложки в один слой, коэффициент рассеяния при изменении угла падения излучения изнутри на выходную поверхность в пределах 20-90 угл градусов (a=70 нм) изменяется от 0,4 до 1. Здесь Ip - интенсивность рассеянного света.

Расчет подтверждает высокую эффективность вывода излучения из объема кристалла светодиода.

Для изготовления светодиода могут быть использованы выпускаемые промышленностью пластины карбида кремния полупроводникового качества, наночастицы карбида кремния с поперечником 50-60 нм и микрочастицы карбида кремния с поперечником 1-3 мкм.

Таким образом, показано, что новые элементы в предложениях обеспечивают возникновение полезных эффектов; показана реализуемость изобретения, показана достижимость целей изобретения.

Практическое применение изобретение может найти в технологиях изготовления эффективных светодиодов, возможно использование при создании оптических устройств с антибликовыми покрытиями.

Техническим результатом изобретения является конструкция светодиода с повышенным внешним квантовым выходом и простой технологией изготовления.


УСТРОЙСТВО ПОЛУПРОВОДНИКОВОГО СВЕТОДИОДА
УСТРОЙСТВО ПОЛУПРОВОДНИКОВОГО СВЕТОДИОДА
УСТРОЙСТВО ПОЛУПРОВОДНИКОВОГО СВЕТОДИОДА
УСТРОЙСТВО ПОЛУПРОВОДНИКОВОГО СВЕТОДИОДА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 40.
10.11.2013
№216.012.7fbd

Оптический коммутатор оптических линий связи

Изобретение относится к оптике, к оптическим волноводным устройствам, в частности к микромеханическим оптическим коммутаторам оптических линий связи. Технический результат изобретения заключается в создании устройства матричного коммутатора оптических линий связи, имеющего размеры...
Тип: Изобретение
Номер охранного документа: 0002498374
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.834a

Способ корректировки формы поверхности оптических деталей

Изобретение может быть использовано для выравнивания поверхностей пластин интерферометров путем локального нанесения на поверхность тонких, компенсирующих неравномерности слоев. Способ включает локальное нанесение лазерным осаждением на поверхность слоя прозрачного или непрозрачного материала....
Тип: Изобретение
Номер охранного документа: 0002499286
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.91ea

Двухдиапазонный инфракрасный объектив

Объектив может использоваться в тепловизионных приборах с матричными приемниками, регистрирующими изображение в фиксированной плоскости. Объектив содержит четыре компонента. Первый и четвертый - в виде положительных менисков из одинакового материала, обращенных вогнутостями к плоскости...
Тип: Изобретение
Номер охранного документа: 0002503047
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.aa58

Оптический пассивный затвор

Изобретение относится к оптической и оптоэлектронной технике, к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Затвор содержит испаряющуюся сфокусированным излучением металлическую пленку на прозрачной...
Тип: Изобретение
Номер охранного документа: 0002509323
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ace7

Способ определения неровности поверхности дорожного полотна

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. В способе определения неровности поверхности покрытия дорожного полотна измеряют просветы под трехметровой рейкой и согласно изобретению устанавливают наземный лазерный сканер на станции на контролируемом...
Тип: Изобретение
Номер охранного документа: 0002509978
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b1fb

Способ напыления в вакууме структур для приборов электронной техники, способ регулирования концентрации легирующих примесей при выращивании таких структур и резистивный источник паров напыляемого материала и легирующей примеси для реализации указанного способа регулирования, а также основанный на использовании этого источника паров способ напыления в вакууме кремний-германиевых структур

Изобретение относится к технологии полупроводниковых структур для приборов электронной техники. Изобретение обеспечивает возможность прецизионного варьирования в широких пределах концентрацией легирующей примеси в выращиваемой структуре путем изменения температуры и агрегатного состояния...
Тип: Изобретение
Номер охранного документа: 0002511279
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0e9

Интерференционный многолучевой светофильтр (варианты)

Светофильтр содержит плоскую прозрачную пластину с тонкопленочным прозрачным покрытием одной ее поверхности. В первом варианте светофильтр содержит также оптическую призму ввода излучения, закрепленную плоской гранью на тонкопленочном покрытии вблизи конца пластины. Показатели преломления...
Тип: Изобретение
Номер охранного документа: 0002515134
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cd73

Сканирующее интерференционное устройство в виде двухзеркального интерферометра фабри-перо

Сканирующее интерференционное устройство содержит подложки с зеркальным покрытием с регулированием положения при помощи пьезоэлемента, подключенного к источнику переменного напряжения. Поверхности подложек зеркал интерферометра между собой соединены с помощью прозрачного упругого сплошного или...
Тип: Изобретение
Номер охранного документа: 0002518366
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d884

Оптический пассивный затвор

Изобретение относится к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Оптический пассивный затвор содержит зеркальную металлическую пленку на подложке, установленной в плоскости промежуточного...
Тип: Изобретение
Номер охранного документа: 0002521206
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d886

Дифференциальный массивный тонкопленочный калориметр

Изобретение относится к области приборостроения и может быть использовано в процессе физико-химических методов анализа химических соединений. Заявлен дифференциальный массивный тонкопленочный калориметр для определения тепловых эффектов адсорбции или химических реакций газов, содержащий...
Тип: Изобретение
Номер охранного документа: 0002521208
Дата охранного документа: 27.06.2014
Показаны записи 11-20 из 51.
10.11.2013
№216.012.7fbd

Оптический коммутатор оптических линий связи

Изобретение относится к оптике, к оптическим волноводным устройствам, в частности к микромеханическим оптическим коммутаторам оптических линий связи. Технический результат изобретения заключается в создании устройства матричного коммутатора оптических линий связи, имеющего размеры...
Тип: Изобретение
Номер охранного документа: 0002498374
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.834a

Способ корректировки формы поверхности оптических деталей

Изобретение может быть использовано для выравнивания поверхностей пластин интерферометров путем локального нанесения на поверхность тонких, компенсирующих неравномерности слоев. Способ включает локальное нанесение лазерным осаждением на поверхность слоя прозрачного или непрозрачного материала....
Тип: Изобретение
Номер охранного документа: 0002499286
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.91ea

Двухдиапазонный инфракрасный объектив

Объектив может использоваться в тепловизионных приборах с матричными приемниками, регистрирующими изображение в фиксированной плоскости. Объектив содержит четыре компонента. Первый и четвертый - в виде положительных менисков из одинакового материала, обращенных вогнутостями к плоскости...
Тип: Изобретение
Номер охранного документа: 0002503047
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.aa58

Оптический пассивный затвор

Изобретение относится к оптической и оптоэлектронной технике, к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Затвор содержит испаряющуюся сфокусированным излучением металлическую пленку на прозрачной...
Тип: Изобретение
Номер охранного документа: 0002509323
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ace7

Способ определения неровности поверхности дорожного полотна

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. В способе определения неровности поверхности покрытия дорожного полотна измеряют просветы под трехметровой рейкой и согласно изобретению устанавливают наземный лазерный сканер на станции на контролируемом...
Тип: Изобретение
Номер охранного документа: 0002509978
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b1fb

Способ напыления в вакууме структур для приборов электронной техники, способ регулирования концентрации легирующих примесей при выращивании таких структур и резистивный источник паров напыляемого материала и легирующей примеси для реализации указанного способа регулирования, а также основанный на использовании этого источника паров способ напыления в вакууме кремний-германиевых структур

Изобретение относится к технологии полупроводниковых структур для приборов электронной техники. Изобретение обеспечивает возможность прецизионного варьирования в широких пределах концентрацией легирующей примеси в выращиваемой структуре путем изменения температуры и агрегатного состояния...
Тип: Изобретение
Номер охранного документа: 0002511279
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0e9

Интерференционный многолучевой светофильтр (варианты)

Светофильтр содержит плоскую прозрачную пластину с тонкопленочным прозрачным покрытием одной ее поверхности. В первом варианте светофильтр содержит также оптическую призму ввода излучения, закрепленную плоской гранью на тонкопленочном покрытии вблизи конца пластины. Показатели преломления...
Тип: Изобретение
Номер охранного документа: 0002515134
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cd73

Сканирующее интерференционное устройство в виде двухзеркального интерферометра фабри-перо

Сканирующее интерференционное устройство содержит подложки с зеркальным покрытием с регулированием положения при помощи пьезоэлемента, подключенного к источнику переменного напряжения. Поверхности подложек зеркал интерферометра между собой соединены с помощью прозрачного упругого сплошного или...
Тип: Изобретение
Номер охранного документа: 0002518366
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d884

Оптический пассивный затвор

Изобретение относится к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Оптический пассивный затвор содержит зеркальную металлическую пленку на подложке, установленной в плоскости промежуточного...
Тип: Изобретение
Номер охранного документа: 0002521206
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d886

Дифференциальный массивный тонкопленочный калориметр

Изобретение относится к области приборостроения и может быть использовано в процессе физико-химических методов анализа химических соединений. Заявлен дифференциальный массивный тонкопленочный калориметр для определения тепловых эффектов адсорбции или химических реакций газов, содержащий...
Тип: Изобретение
Номер охранного документа: 0002521208
Дата охранного документа: 27.06.2014
+ добавить свой РИД