×
27.03.2015
216.013.3672

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА СВИСТА В ЛЕГКИХ ЧЕЛОВЕКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к пульмонологии и позволяет локализовать и одновременно определить местоположение источников дополнительных дыхательных шумов, а именно свистов, в легких человека. Способ включает синхронную регистрацию колебательного смещения и динамической силы звуковой волны, излученной от источника свиста, на его пиковой частоте в не менее чем четырех точках поверхности грудной клетки акустическим датчиком, положение которого в пространстве и относительно грудной клетки человека известно. Вычисляют акустическую интенсивность на пиковой частоте свиста, определяют отношение (C) вещественной Re(W) и мнимой Im(W) частей акустической интенсивности и расстояние (r) от каждой выбранной точки на поверхности грудной клетки до источника свиста с учетом типа источника излучения (монополь, диполь или квадруполь). Затем отдельно для каждого из трех типов излучения разностно-дальномерными методами определяют местоположение и разброс определения местоположения источника свиста, при этом источнику свиста присваивают тот тип излучения, который характеризуется наименьшим разбросом определения местоположения, а его местонахождение отображают в виде точечной или интервальной оценки в трехмерном пространстве. 2 ил.
Основные результаты: Способ определения местоположения источника свиста в легких человека, в котором акустический параметр звуковой волны, излученной от источника свиста, на его пиковой частоте регистрируют последовательно или одновременно в не менее чем четырех точках поверхности грудной клетки акустическим датчиком или датчиками, положение которых в пространстве и относительно грудной клетки человека известно, при этом в качестве акустического параметра в каждой точке синхронно измеряют колебательное смещение и динамическую силу звуковой волны, вычисляют акустическую интенсивность на пиковой частоте свиста, определяют отношение (C) вещественной Re(W) и мнимой Im(W) частей акустической интенсивности, расстояние (r) от каждой выбранной точки на поверхности грудной клетки до источника свиста r=c/2πfz путем решения уравнений для монопольного (z-C=0), дипольного (2z+z-C) и поперечно-квадрупольного (45z+12z+3z-C=0) типов излучения, где z=1/kr, k - волновое число, c - средняя скорость звука в системе паренхима легких - грудная стенка, f - пиковая частота свиста, затем отдельно для каждого из корней уравнений для трех типов излучения разностно-дальномерными методами определяют местоположение и разброс определения местоположения источника свиста, при этом источнику свиста присваивают тот тип излучения, который характеризуется наименьшим разбросом определения местоположения, а его местоположение отображают в виде точечной или интервальной оценки в трехмерном пространстве.

Изобретение относится к пульмонологии, конкретно, к способам локализация источников дополнительных дыхательных шумов, а именно свистов, в легких человека, что является актуальной задачей для медицинской диагностики заболеваний легких.

Известно применение для локализации источников дополнительных дыхательных шумов поверхностного картирования с помощью нескольких акустических датчиков, размещаемых на поверхности грудной клетки [Sen I., Saraclar М., Kahua Y.P. Acoustic mapping of the lung based on source localization of adventitious respiratory sound components // 32 Annual Int. conf of IEEE EMBS Buenos Aires, Argentina, 2010. Book Series: IEEE Engineering in Medicine and Biology Society Conference Proceedings. - P. 3670-3673]. Однако в этом случае удается определить не истинное положение источника свиста в трехмерном легком, а только его проекцию на поверхность грудной клетки.

В качестве аналога способа определения местоположения источника свиста в легких человека рассмотрим техническое решение, в котором акустический параметр звуковой волны (в данном случае колебательное смещение), излученной от источника свиста, на его пиковой частоте регистрируют синхронно в нескольких точках на поверхности грудной клетки акустическими датчиками, положение которых в пространстве и относительно грудной клетки человека известно, вычисляют задержки времени распространения сигнала от источника свистов на нескольких парах акустических датчиков и положение источника свистов в трехмерном легком вычисляют известным из навигации методом триангуляции (Kompis М., Pasterkamp Н., Wodicka G.R. Acoustic imaging of the human chest // Chest. - 2001. - V. 120(4). - P. 1309-1321). Для осуществления способа необходимо иметь данные о задержках времени распространения сигнала с четырех пар акустических датчиков.

Недостатками данного способа являются необходимость большого количества акустических датчиков и необходимость проведения синхронных измерений с их использованием. Это исключает возможность проведения последовательных измерений одним акустическим датчиком и, следовательно, усложняет измерительную установку. Кроме того, в этом случае невозможно получить информацию о типе колебательного источника свиста (монополь, диполь, квадруполь), которая имеет значение для классификации свиста, в том числе и с точки зрения норма/патология, тип патологии.

Наиболее близким к заявляемому является техническое решение, приведенное в патенте США №5844997 «Metod and apparatus for locating the origin of intrathoracic sounds», в котором акустический параметр (колебательное смещение) звуковой волны, излученной от источника свиста, на его пиковой частоте регистрируют синхронно в нескольких точках на поверхности грудной клетки не менее чем 5 акустическими датчиками, положение которых в пространстве и относительно грудной клетки человека известно, вычисляют задержки времени распространения сигнала от источника свистов между этими акустическими датчиками, записывают уравнение для дистанции и времени распространения сигнала от каждого датчика до источника свистов, где координаты положения источника свистов являются неизвестными, формируют систему из не менее чем 4 таких уравнений, решают ее и находят положение источника свистов в трехмерном легком.

Недостатками прототипа являются необходимость большого количества акустических датчиков (не менее чем 5 датчиков), необходимость проведения синхронных измерений, невозможность проведения последовательных измерений одним акустическим датчиком, приводящая к громоздкости измерительной установки. Кроме того, в прототипе также невозможно получить информацию о типе колебательного источника свиста (монополь, диполь, квадруполь), которая имеет значение для его классификации, в том числе и с точки зрения норма/патология, тип патологии.

Задача, на решение которой направлено заявляемое техническое решение, состоит в разработке нового более простого и информативного способа определения местоположения свистов в легких человека.

Технический результат - локализация и одновременное определение типа колебательного источника свиста.

Поставленная задача решается тем, акустический параметр звуковой волны, излученной от источника свиста, на его пиковой частоте регистрируют последовательно или одновременно в не менее чем четырех точках поверхности грудной клетки акустическим датчиком или датчиками, положение которых в пространстве и относительно грудной клетки человека известно, при этом в качестве акустического параметра в каждой точке синхронно измеряют колебательное смещение и динамическую силу звуковой волны, вычисляют акустическую интенсивность на пиковой частоте свиста, определяют отношение (C) вещественной Re(W) и мнимой Im(W) частей акустической интенсивности, расстояние (r) от каждой выбранной точки на поверхности грудной клетки до источника свиста r=c/2πfz путем решения уравнений для монопольного (z-C=0), дипольного (2Z3+z-С) и поперечно-квадрупольного (45z5+12z3+3z-C=0) типов источника излучения, где z=1/kr, k - волновое число, c - средняя скорость звука в системе паренхима легких - грудная стенка, f - пиковая частота свиста, затем отдельно для каждого из корней уравнений для трех типов источника излучения разностно-дальномерными методами определяют местоположение и разброс определения местоположения источника излучения, при этом источнику свиста присваивают тот тип излучения, который характеризуется наименьшим разбросом определения местоположения, и отображают его местонахождение в виде точечной или интервальной оценки в трехмерном пространстве.

Использование в качестве регистрируемого акустического параметра колебательного смещения и динамической силы звуковой волны позволяет из одной точки измерения определить дистанцию до источника свиста.

Измерение предложенного акустического параметра может быть осуществлено датчиком, одновременно измеряющим и колебательное смещение, и динамическую силу, например комбинированным приемником КАД, описанным в патенте РФ №2496421, каналы которого выступают в качестве приемника колебательного смещения и приемника динамической силы.

Большинство известных механизмов формирования свистов предсказывают генерацию свистов в достаточно ограниченной по длине дыхательного пути (ДП) области - модели срыва вихрей на бифуркациях, сужении сечения или автоколебания смыканий слизистой ткани, составляющей по порядку 1 см (Коренбаум В.И., Кулаков Ю.В., Тагильцев А.А. Акустические эффекты в системе дыхания человека при форсированном выдохе // Акуст. журн. - 1997. - Т. 43(1). - С. 78). Диаметры ДП, в которых наиболее вероятно образование свистов, находятся в пределах 2-10 мм. С другой стороны, при средней скорости звука в паренхиме легких 30 м/с длина продольной звуковой волны с частотой 300 Гц составляет 10 см. Таким образом, источник свистов может рассматриваться точечным в волновом смысле при распространении от него звуковой волны в паренхиме легких в диапазоне частот до примерно 300-500 Гц (Коренбаум В.И., Тагильцев А.А., Кулаков Ю.В. Особенности акустических явлений, наблюдаемых при аускультации легких // Акуст. журн. - 2003. - Т. 49(3). - С. 376-388).

Создаваемые источником звуковое давление и радиальная колебательная скорость при излучении в тканевую среду (структуру) легких могут быть вычислены следующим образом.

Как известно, точечный источник звука может совершать колебания различных типов: монопольные, дипольные, квадрупольные. Пусть источник свиста - поперечный квадруполь (Скучик Е. Основы акустики. Т. 2. М.: Мир, 1976. С. 10-31) (со случайной амплитудой, ориентация для конкретного источника свиста остается детерминированной), излучающий в тканевую среду (структуру) легких, тогда его звуковое давление (p) равно

p=-ik3ρcQxyexp(-ikr)xy/4πr3∗.[1-3i/kr-3/(kr)2],

где Qxy - производительность квадруполя (случайный параметр), . Радиальная колебательная скорость (тангенциальную мы не учитываем по соображениям, изложенным ранее в Акуст. журн. - 2003. - Т. 49(3). - С. 376-388) имеет вид:

vr=(i/kρc)∂/∂r(p).

Подставляя выражение для p в формулу vr и производя очевидные преобразования, получим

vr=k2Qxyxy/4π∗∂/∂r{exp(-ikr)[1/r3-3i/kr4-3/(kr)2r3]}=k3Qxyxy/4πr3∗[exp(-ikr)][-3/kr+12i/(kr)2+15/(kr)3-i-3/kr+3i/(kr)2]}=-k3Qxyxy/4πr3∗[exp(-ikr)][i+6/kr-15i/(kr)2-15/(kr)3]}.

Переходя к представлению каналов КАД в качестве приемника колебательного смещения и приемника динамической силы, с точностью до чувствительностей этих приемников получаем на выходе первого из них электрический отклик:

второго -

Udf ~ -i2k3ρcQxyexp(-ikr)xy/4πr3∗.[1-3i/kr-3/(kr)2].

Вычисляя взаимный спектр откликов приемников и сокращая с учетом последующего деления Re(W)/Im(W) одинаковые сомножители, запишем:

W=UodU*df~-[-1+6i/kr+15/(kr)2-15i/(kr)3][i+3/kr-3i/(kr)2]*=-[-1+6i/kr+15/(kr)2-15i/(kr)3][-i+3/kr+3i/(kr)2]=-[i+3/kr+12/(kr)3+45/(kr)5],

где * - означает комплексное сопряжение.

Таким образом,

Re(W)Im(W)=3/kr+12/(kr)3+45/(kr)5.

Полагая, что экспериментально измеренное значение отношения вещественной и мнимой компонент взаимного спектра пиковой частоты структурного свиста Re(W)/Im(W)=С и вводя обозначение z=1/kr, получим уравнение

которое может быть решено численно для каждого конкретного источника свиста, характеризуемого структурным проведением. Аналогично для источника в виде Монополя:

p=P0exp(-ikr)/r

vr=P0exp(-ikr)/ρcr∗.[1-i/kr],

где P0 - звуковое давление источника.

Аналогично для источника в виде Диполя:

р=Bexp(-ikr)/r∗[1-i/kr]cosφ

vr=Bexp(-ikr)/ρcr∗.[1-2i/kr-2/(kr)2]cosφ,

где B - константа излучения диполя [Скучик Е. Основы акустики. Т.2. М.: Мир, 1976. С.10-31].

Решая уравнения (1, 2, 3), получим расстояние r=c/27πfz для источников различного типа, где c - средняя скорость звука в системе паренхима легких - грудная стенка (Коренбаум В.И., Тагильцев А.А., Кулаков Ю.В. Особенности акустических явлений, наблюдаемых при аускультации легких // Акуст. журн. - 2003. - Т. 49(3). - С. 376-388).

Затем отдельно для каждого из корней уравнений и типов источника (1-3) определяют местоположение и разброс определения местоположения источника известными разностно-дальномерными методами. Для каждого типа источника выбирают тип источника с наименьшим разбросом определения местоположения и для него отображают местоположение в виде точечной (центр и характеристика разброса) или интервальной (границы) оценки в трехмерном пространстве. При этом источнику свиста присваивают тот тип излучения, который характеризуется наименьшим разбросом определения местоположения, а его местоположение отображают в виде точечной или интервальной оценки в трехмерном пространстве.

Для примера осуществления способа запись дыхательных шумов со свистами была выполнена с помощью КАД на здоровом добровольце в правой подлопаточной области с частотой дискретизации 10 кГц и динамическим диапазоном 16 бит на электронном самописце PowerLab (ADInstruments). Полученные записи преобразованы в формат wav и далее обрабатывались в программе SpectraLab (SoundTech Inc.). Спектрограмма каналов КАД (выборки 1024 отсчета, перекрытие 50%, окно Хэннинга, масштаб по амплитуде логарифмический) показана на фиг.1, где сверху - канал колебательного смещения, снизу - канал динамической силы, 1 - мощные свисты форсированного выдоха ФВ, 2 - слабые свисты в конце ФВ, 3 - свисты на вдохе. На спектрограмме (фиг.1) выделены дорожки свистящих звуков (свистов). Для фрагментов времени, в которых свисты наблюдаются, рассчитаны авто и взаимные спектры каналов. В наиболее мощной части шумов ФВ выделены свисты на частотах 341.8, 498, 537.1, 1152.3 Гц. Также выделены слабые свисты в конце ФВ с частотами 1328.1 и 1757.8 Гц. На вдохе выделены свисты с частотами 175.8, 234.4, 322.3 Гц.

Вещественные корни уравнений (1, 3) для свистов выделенных частот рассчитаны численно. Из физических соображений для модели источника в виде поперечного квадруполя из 5 полученных оставлено 3 положительных корня (отрицательные дистанции не имеют физического смысла), для модели источника в виде диполя из 3 полученных - 2 положительных корня. Для выделенных выше свистов (фиг.1) полученные решения и соответствующие им дистанции (см) и волновые расстояния (kr) сведены в таблице (Фиг.2), при этом средняя скорость звука (c) взята равной 30 м/с.

С учетом ориентировочной толщины грудной стенки 2 см корни решения уравнений (1-3), оценивающие дальность до источника величиной менее 2.5-3 см, могут быть отброшены из физических соображений. Наличие отрицательного отношения Re(W)/Im(W) для источника мощного свиста с частотой 1152.3 Гц явно противоречит модели чисто структурного распространения и должно быть исключено.

Известно, что наиболее интенсивные среднечастотные (400-600 Гц) свисты ФВ у здоровых лиц образуются преимущественно в центральных отделах бронхиального дерева (нижняя часть трахеи и главные/долевые бронхи) (Коренбаум В.И., Сафронова М.А. и др. Исследование механизмов формирования свистящих звуков форсированного выдоха здорового человека при дыхании газовыми смесями с разной плотностью // Акуст. журн. - 2013. - Т. 59(2). - С. 268-278). С этой точки зрения дальности, рассчитанные для мощных свистов ФВ на частотах 341.8, 498, 537.1 Гц при использовании модели квадрупольного источника, представляются вполне правдоподобными. Действительно, прямое расстояние (пелвиметр) между положением датчика КАД под углом правой лопатки и яремной впадиной у обследованного добровольца составляет 23-24 см. Таким образом, измеренные значения прямой дальности 16.4-16.9 см указывают на локализацию их, видимо, общего источника на 6.1-7.6 см вглубь (и вниз) грудной клетки от яремной впадины, что из анатомических соображений хорошо соответствует нижней части трахеи либо области бифуркации трахеи и главных/долевых бронхов. Дипольная же и монопольная модели излучателя дают почти втрое меньшие оценки дальности до источника, которые поэтому представляются в данном случае нереалистичными.

Напротив, дыхательные шумы вдоха у здоровых лиц предположительно формируются в значительно более дистально расположенных отделах бронхиального дерева до 9-13 уровней его ветвления (Коренбаум В.И., Тагильцев А.А., Кулаков Ю.В. Особенности акустических явлений, наблюдаемых при аускультации легких // Акуст. журн. - 2003. - Т. 49(3). - С. 376-388). Поэтому дистанции 14.3-22.6 см, полученные здесь для первого корня уравнения (1), при квадрупольном излучении представляются неправдоподобно большими. Это умозаключение подкрепляется тем обстоятельством, что шумы вдоха намного менее интенсивны по уровню, чем шумы ФВ, и из-за высокого затухания маловероятно, чтобы они хорошо проводились по структуре из столь удаленных участков легких (Коренбаум В.И., Тагильцев А.А., Кулаков Ю.В. Особенности передачи звука голоса человека на стенку грудной клетки // Акуст. журн. - 1998. - Т. 44(3). - С. 380-390). Гораздо более реалистичными выглядят дистанции, получаемые для второго корня квадрупольного источника и для монопольного и дипольного источников. Согласно (Коренбаум В.И., Тагильцев А.А., Кулаков Ю.В. Особенности акустических явлений, наблюдаемых при аускультации легких // Акуст. журн. - 2003. - Т. 49(3). - С. 376-388) именно монопольный характер излучения для шумов вдоха (шум турбулентного потока) представляется наиболее обоснованным. Для такого типа излучения рассчитанные дальности позволяют выделить 2 источника (табл.): один на удалении 7.1 см, второй - 4.6-4.8 см. При всех рассмотренных моделях излучения на вдохе удается разрешить два типа источника с разными частотами свистов.

Для устранения неоднозначности в выборе типа источника путем синхронного или последовательного определения дистанции из нескольких участков поверхности грудной клетки находим зону максимального сближения (или пересечения) сферических поверхностей построенных из центров положений не менее чем 4 датчиков (разностно-дальномерный метод). Это позволяет исключить те решения по дальности, которые не обеспечивают пересечения данных сферических поверхностей в пределах размеров грудной клетки, а для обеспечивающих пересечение - построить величину разброса, характеризующую точность определения местоположения источника. При этом выбирают тот тип источника, для которого зона пересечения или максимального сближения сферических поверхностей характеризуется минимальным разбросом. Затем эту зону отображают в виде точечной (центр и характеристика разброса) или интервальной оценки в трехмерном пространстве, а по использованным для ее получения уравнениям устанавливают наиболее вероятный тип источника свиста, информация о котором может быть полезной для диагностических целей.

Сигналы, записанные на различных участках поверхности грудной клетки, могут иметь разное качество записи свистов, поэтому при определении местоположения источника свиста выбирают дистанции от тех 4 точек на поверхности грудной клетки, которые обеспечивают минимальный разброс определения местоположения источника свиста. Кроме того, значения скорости звука в тканях грудной клетки могут различаться от субъекта к субъекту и от одной зоны к другой даже у одного субъекта. Поэтому для повышения точности определения местоположения свиста значение скорости звука на различных участках грудной клетки можно предварительно промерять известными способами, например путем подачи искусственного зондирующего сигнала в рот обследуемого (патент РФ №2412647), и использовать полученные величины при решении уравнений (1-3) для каждой точки или путем варьирования значений скорости звука в известных пределах (например, от 20 до 40 м/с) с целью поиска минимального значения разброса определения местоположения источника свистов, как предлагается в прототипе.

Способ определения местоположения источника свиста в легких человека, в котором акустический параметр звуковой волны, излученной от источника свиста, на его пиковой частоте регистрируют последовательно или одновременно в не менее чем четырех точках поверхности грудной клетки акустическим датчиком или датчиками, положение которых в пространстве и относительно грудной клетки человека известно, при этом в качестве акустического параметра в каждой точке синхронно измеряют колебательное смещение и динамическую силу звуковой волны, вычисляют акустическую интенсивность на пиковой частоте свиста, определяют отношение (C) вещественной Re(W) и мнимой Im(W) частей акустической интенсивности, расстояние (r) от каждой выбранной точки на поверхности грудной клетки до источника свиста r=c/2πfz путем решения уравнений для монопольного (z-C=0), дипольного (2z+z-C) и поперечно-квадрупольного (45z+12z+3z-C=0) типов излучения, где z=1/kr, k - волновое число, c - средняя скорость звука в системе паренхима легких - грудная стенка, f - пиковая частота свиста, затем отдельно для каждого из корней уравнений для трех типов излучения разностно-дальномерными методами определяют местоположение и разброс определения местоположения источника свиста, при этом источнику свиста присваивают тот тип излучения, который характеризуется наименьшим разбросом определения местоположения, а его местоположение отображают в виде точечной или интервальной оценки в трехмерном пространстве.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА СВИСТА В ЛЕГКИХ ЧЕЛОВЕКА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА СВИСТА В ЛЕГКИХ ЧЕЛОВЕКА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 60.
20.08.2013
№216.012.5fd4

Подводный планер (варианты)

Изобретение относится к автономным необитаемым подводным самоходным аппаратам (планерам-глайдерам) для исследования водных акваторий. Подводный планер выполнен с возможностью саморегуляции угла атаки крыла в зависимости от скорости и направления набегающего потока без использования...
Тип: Изобретение
Номер охранного документа: 0002490164
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68ee

Способ определения вертикальной скорости продольных волн в слоях анизотропной среды

Способ относится к области сейсморазведки и может быть использован для изучения геологического строения среды с целью обнаружения месторождений нефти, газа и других полезных ископаемых. Способ основан на определении вертикальной скорости продольных упругих волн в анизотропной среде по величинам...
Тип: Изобретение
Номер охранного документа: 0002492509
Дата охранного документа: 10.09.2013
27.09.2013
№216.012.7052

Способ и устройство для измерения ускорения силы тяжести

Предложены способ и устройство измерения ускорения силы тяжести g. В способе определяют угловую скорость вращения волчка и угловую скорость прецессии волчка в прямом и обратном положениях волчка. В качестве волчка используют насаженный на ось диск со сквозными отверстиями в форме сегмента....
Тип: Изобретение
Номер охранного документа: 0002494405
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.7827

Способ регистрации дыхательных звуков на поверхности грудной клетки и комбинированный приемник для осуществления способа

Изобретение относится к медицине. При осуществлении способа проводят синхронную запись колебаний поверхности грудной клетки двумя датчиками, один из которых записывает колебательное смещение, а другой динамическую силу на поверхности грудной клетки. Отклики датчиков обрабатывают путем...
Тип: Изобретение
Номер охранного документа: 0002496421
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.8a21

Комбинированный гидроакустический приемник для гибкой протяженной буксируемой антенны

Изобретение относится к области гидроакустики и может быть использовано в составе гибкой протяженной буксируемой антенны при проведении гидроакустических исследований, в частности для измерения гидроакустических шумов в морях и океанах. Заявлен комбинированный гидроакустический приемник,...
Тип: Изобретение
Номер охранного документа: 0002501043
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.957c

Автономное устройство для регистрации скорости и направления течения жидкости и газа

Устройство предназначено для определения скорости и направления течения жидкости и газа и может быть использовано как для проводящих, так и для непроводящих сред. Устройство состоит из измерительно-регистрационного блока и узла подвеса, закрепленного на жестком носителе и обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002503962
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9fc6

Способ картирования археологических объектов

Изобретение относится к области магниторазведки и может быть использовано в археологии для выявления границ археологических объектов. Сущность: по квадратной сети наблюдений измеряют магнитную восприимчивость поверхности почвенного слоя. Строят в изолиниях карту магнитной восприимчивости....
Тип: Изобретение
Номер охранного документа: 0002506610
Дата охранного документа: 10.02.2014
10.03.2014
№216.012.aa55

Цифровой комбинированный векторный приемник с синтезированными каналами

Использование: приемник предназначен для проведения векторно-скалярных измерений параметров гидроакустических полей в морях и океанах. Сущность: приемник включает корпус с инерционной массой, расположенной в центре корпуса, шесть АЦП, микропроцессор и три измерительных канала, оси...
Тип: Изобретение
Номер охранного документа: 0002509320
Дата охранного документа: 10.03.2014
10.07.2014
№216.012.da83

Метод пассивного акустического мониторинга придонных газожидкостных потоков

Изобретение относится к экологии, защите и мониторингу окружающей среды и может быть использовано для обнаружения утечек газа из газопроводов и технических систем добычи углеводородов, для локализации и исследований природных источников газов под водой, а также для количественной оценки объемов...
Тип: Изобретение
Номер охранного документа: 0002521717
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc47

Способ оценки потока газа

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал. Принимают сигналы обратного излучения звука от каждого из пузырьков, пересекающих за...
Тип: Изобретение
Номер охранного документа: 0002522169
Дата охранного документа: 10.07.2014
Показаны записи 1-10 из 45.
20.08.2013
№216.012.5fd4

Подводный планер (варианты)

Изобретение относится к автономным необитаемым подводным самоходным аппаратам (планерам-глайдерам) для исследования водных акваторий. Подводный планер выполнен с возможностью саморегуляции угла атаки крыла в зависимости от скорости и направления набегающего потока без использования...
Тип: Изобретение
Номер охранного документа: 0002490164
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68ee

Способ определения вертикальной скорости продольных волн в слоях анизотропной среды

Способ относится к области сейсморазведки и может быть использован для изучения геологического строения среды с целью обнаружения месторождений нефти, газа и других полезных ископаемых. Способ основан на определении вертикальной скорости продольных упругих волн в анизотропной среде по величинам...
Тип: Изобретение
Номер охранного документа: 0002492509
Дата охранного документа: 10.09.2013
27.09.2013
№216.012.7052

Способ и устройство для измерения ускорения силы тяжести

Предложены способ и устройство измерения ускорения силы тяжести g. В способе определяют угловую скорость вращения волчка и угловую скорость прецессии волчка в прямом и обратном положениях волчка. В качестве волчка используют насаженный на ось диск со сквозными отверстиями в форме сегмента....
Тип: Изобретение
Номер охранного документа: 0002494405
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.7827

Способ регистрации дыхательных звуков на поверхности грудной клетки и комбинированный приемник для осуществления способа

Изобретение относится к медицине. При осуществлении способа проводят синхронную запись колебаний поверхности грудной клетки двумя датчиками, один из которых записывает колебательное смещение, а другой динамическую силу на поверхности грудной клетки. Отклики датчиков обрабатывают путем...
Тип: Изобретение
Номер охранного документа: 0002496421
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.8a21

Комбинированный гидроакустический приемник для гибкой протяженной буксируемой антенны

Изобретение относится к области гидроакустики и может быть использовано в составе гибкой протяженной буксируемой антенны при проведении гидроакустических исследований, в частности для измерения гидроакустических шумов в морях и океанах. Заявлен комбинированный гидроакустический приемник,...
Тип: Изобретение
Номер охранного документа: 0002501043
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.957c

Автономное устройство для регистрации скорости и направления течения жидкости и газа

Устройство предназначено для определения скорости и направления течения жидкости и газа и может быть использовано как для проводящих, так и для непроводящих сред. Устройство состоит из измерительно-регистрационного блока и узла подвеса, закрепленного на жестком носителе и обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002503962
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9fc6

Способ картирования археологических объектов

Изобретение относится к области магниторазведки и может быть использовано в археологии для выявления границ археологических объектов. Сущность: по квадратной сети наблюдений измеряют магнитную восприимчивость поверхности почвенного слоя. Строят в изолиниях карту магнитной восприимчивости....
Тип: Изобретение
Номер охранного документа: 0002506610
Дата охранного документа: 10.02.2014
10.03.2014
№216.012.aa55

Цифровой комбинированный векторный приемник с синтезированными каналами

Использование: приемник предназначен для проведения векторно-скалярных измерений параметров гидроакустических полей в морях и океанах. Сущность: приемник включает корпус с инерционной массой, расположенной в центре корпуса, шесть АЦП, микропроцессор и три измерительных канала, оси...
Тип: Изобретение
Номер охранного документа: 0002509320
Дата охранного документа: 10.03.2014
10.07.2014
№216.012.da83

Метод пассивного акустического мониторинга придонных газожидкостных потоков

Изобретение относится к экологии, защите и мониторингу окружающей среды и может быть использовано для обнаружения утечек газа из газопроводов и технических систем добычи углеводородов, для локализации и исследований природных источников газов под водой, а также для количественной оценки объемов...
Тип: Изобретение
Номер охранного документа: 0002521717
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc47

Способ оценки потока газа

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал. Принимают сигналы обратного излучения звука от каждого из пузырьков, пересекающих за...
Тип: Изобретение
Номер охранного документа: 0002522169
Дата охранного документа: 10.07.2014
+ добавить свой РИД