×
27.03.2015
216.013.3526

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.
Основные результаты: Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Изобретение относится к технике измерения параметров нелинейных элементов электрических цепей с температурозависимой вольт-амперной характеристикой (ВАХ) и может быть использовано, например, при параметрическом контроле полупроводниковых диодов и полупроводниковых приборов с р-n-переходами.

Известен способ измерения дифференциального сопротивления полупроводниковых диодов (см. ГОСТ 18986.14-85 Диоды полупроводниковые. Методы измерения дифференциального и динамического сопротивлений), заключающийся в подаче постоянного тока I0 для задания рабочей точки и переменного гармонического тока малой амплитуды Im в качестве тестового сигнала на калибровочный резистор сопротивлением RK, в измерении амплитуды U переменного напряжения на калибровочном резисторе, в подключении к генератору тока вместо калибровочного резистора контролируемого диода и в измерении амплитуды U переменной составляющей напряжения на контролируемом диоде и определении дифференциального сопротивления диода по формуле

Условием точного измерения дифференциального сопротивления нелинейных двухполюсников является малость тестового сигнала. В ГОСТ 18986.14-85 условие малости тестового сигнала задается в виде ограничения амплитуды переменного тока, которая не должна превышать 10% значения постоянного тока.

Недостатком известного способа является большая погрешность, обусловленная саморазогревом p-n-перехода диода в процессе измерения рассеиваемой мощностью.

Известен способ определения дифференциального сопротивления температурозависимых двухполюсников по наклону изотермической ВАХ, измеренной в импульсном режиме путем подачи на контролируемый двухполюсник последовательности импульсов тока с нарастающей амплитудой, и в измерении амплитуды импульсов напряжения на контролируемом двухполюснике (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа. - 1975. - С.777). Способ измерения изотермической ВАХ путем подачи последовательности импульсов тока с линейно нарастающей амплитудой реализован ряде современных параметрических анализаторов (см., например, Keithley 420 SCS Parameter Analyzer: www.keithley.ru/products/semiconductors/dcac/carrentvoltage/420scs).

Недостатком способа является низкая точность, обусловленная большой погрешностью однократного измерения импульсного напряжения на контролируемом двухполюснике и необходимостью вычисления разности двух близких по значению напряжений. Известно, что погрешность разности двух близких по значению физических величин, измеренных даже с небольшой погрешностью, во много раз превышает погрешность измерения каждой из величин.

Технический результат - повышение точности измерения дифференциального сопротивления нелинейных двухполюсников с температурочувствительной ВАХ.

Технический результат достигается тем, что в известном способе, состоящем в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Формы сигналов на контролируемом двухполюснике, иллюстрирующие и поясняющие принцип измерения, показаны на фиг.1. При подаче на контролируемый двухполюсник амплитудно-модулированной по гармоническому закону последовательности импульсов тока импульсное напряжение на контролируемом двухполюснике будет также амплитудно-модулированным по закону, близкому к гармоническому, со средней амплитудой Uи, при этом, если глубина M модуляции импульсов тока мала, амплитуда Um огибающей импульсного напряжения на контролируемом двухполюснике будет пропорциональна дифференциальному сопротивлению двухполюсника При малой длительности τи и большой скважности Qи импульсов тока разогревом активной области контролируемого двухполюсника рассеиваемой мощностью можно пренебречь. Сущность изобретения состоит в том, что при амплитудно-импульсной модуляции тестовых импульсов тока и последующем измерении полезного сигнала на частоте модуляции за счет частотной фильтрации и многократного повторения измерительного сигнала существенно уменьшаются шумы и пульсации источника питания и измерительных цепей, что повышает помехоустойчивость способа и снижает погрешность измерения дифференциального сопротивления контролируемого двухполюсника по сравнению с известными способами.

Выбор временных параметров тестового сигнала, то есть длительности τи и скважности Qи импульсов тока, определяется теплофизическими параметрами двухполюсника: тепловой постоянной времени τT и тепловым сопротивлением RT. Для полупроводниковых приборов характерная тепловая постоянная времени кристалла составляет сотни микросекунд и длительность импульсов тока рекомендуется выбирать не более 100 мкс. Приращение температуры активной области полупроводникового прибора в импульсном режиме при малой глубине модуляции определяется по формуле ΔT=RTUиIи/Qи, то есть в Qи раз меньше, чем в статическом режиме. В большинстве практических случаев при тех параметрах электрического режима, при которых измеряются характеристики полупроводниковых приборов, перегрев их активной области в статическом режиме не превышает 40-50°C и уже при скважности Qи>30 перегрев активной области контролируемого двухполюсника в импульсном не будет превышать 1-2°C. Заметим, что частота модуляции Ω последовательности импульсов тока согласно теоремы Котельникова должна выбираться из условия Ω<(1/4τиQи).

Структурная схема устройства, реализующего способ, показана на фиг.2, а эпюры, поясняющие работу устройства, - на фиг.3.

Устройство содержит клеммы 1 для подключения контролируемого двухполюсника, генератор импульсов тока 2, генератор низкой частоты 3, модулятор 4, демодулятор 5 и селективный вольтметр 6. При этом одна из клемм для подключения контролируемого двухполюсника соединена с общей шиной (землей) устройства, а вторая клемма - с выходом модулятора 4, сигнальный вход которого соединен с выходом генератора импульсов тока 2, а модулирующий вход модулятора соединен с выходом генератора низкой частоты 3, вторая клемма для подключения контролируемого двухполюсника соединена также со входом демодулятора 5, выход которого подключен ко входу селективного вольтметра 6.

Устройство работает следующим образом. После подключения контролируемого двухполюсника к клеммам 1 и подачи сигнала пуск на генератор импульсов тока 2 и генератор низкой частоты 3 на входы модулятора 4 поступает последовательность коротких импульсов тока большой скважности и модулирующее гармоническое напряжение заданной низкой частоты, с выхода модулятора амплитудно-модулированная последовательность импульсов тока со средней амплитудой Iи и глубиной модуляции M (фиг.3а) подается на контролируемый двухполюсник, импульсное напряжение на контролируемом двухполюснике, которое также является импульсно модулированным (фиг.3б) подается на вход демодулятора 5 и с выхода демодулятора огибающая импульсного напряжения (фиг.3в) поступает на вход селективного вольтметра 6, настроенного на частоту модуляции. По показанию Aпок селективного вольтметра определяем амплитуду Um огибающей импульсного напряжения по формуле Um=kAпок, где коэффициент k определяется типом преобразователя переменного напряжения в постоянное селективного вольтметра, и далее рассчитываем дифференциальное сопротивление контролируемого двухполюсника по формуле

Заметим, что если глубину М модуляции тока при заданной средней амплитуде импульсов тока задать в выбранной системе единиц из условия MIи=k×10n, где n - целое число, то показания селективного вольтметра будут равны дифференциальному сопротивлению контролируемого двухполюсника.

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 259.
27.07.2015
№216.013.667e

Тепловая электрическая станция

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция, содержащая турбину с отопительными отборами пара, подключенными к нижнему и верхнему сетевым подогревателям, включенным по нагреваемой среде между...
Тип: Изобретение
Номер охранного документа: 0002557791
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6680

Газотурбинный двигатель

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом. Электролизер-кавитатор...
Тип: Изобретение
Номер охранного документа: 0002557793
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66c7

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002557864
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66cb

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002557868
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66f2

Установка для комплексного физиотерапевтического воздействия

Изобретение относится к медицинской технике. Установка для комплексного физиотерапевтического воздействия на организм человека содержит размещенную на кушетке емкость для помещения в нее пациента. Емкость выполнена в виде двух вставленных друг в друга упругих эластичных мешков. Промежуток между...
Тип: Изобретение
Номер охранного документа: 0002557907
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67ab

Карниз крыши здания

Изобретение относится к области строительства, в частности к карнизу крыш зданий. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Карниз крыши, обеспечивающий автоматический сброс сосулек при действиях порывов ветра, содержит параллельный стене...
Тип: Изобретение
Номер охранного документа: 0002558092
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6881

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, кремния, алюминия, ниобия и хрома при их соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002558306
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6882

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558307
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6883

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из нитрида соединения титана, циркония и хрома при их...
Тип: Изобретение
Номер охранного документа: 0002558308
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6884

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558309
Дата охранного документа: 27.07.2015
Показаны записи 111-120 из 431.
20.01.2014
№216.012.990a

Распорка для проводов воздушных линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для механического удаления гололедных отложений. Распорка выполнена в виде плоского шарнирного многозвенного механизма и включает узел соединения тяг и зажимы для крепления тяг к проводам. Узел соединения представляет собой...
Тип: Изобретение
Номер охранного документа: 0002504877
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.990b

Устройство для сброса гололедных отложений с проводов линий электропередачи

Использование: в области электроэнергетики. Технический результат - повышение эффективности при упрощении конструкции. Устройство для сброса мокрого снега и гололедных отложений (1) с проводов (2) включает элемент (3) для импульсного встряхивания проводов, действующий от веса отложений и...
Тип: Изобретение
Номер охранного документа: 0002504878
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.990c

Устройство для сброса отложений с проводов линий электропередачи

Использование: в области электроэнергетики. Технический результат - повышение эффективности при упрощении конструкции. Устройство для сброса гололедных отложений (1) с проводов (2) содержит узел импульсного встряхивания проводов, встроенный в механическую цепь подвески провода, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002504879
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.990d

Устройство для сброса гололедных отложений с проводов линий электропередачи

Использование: в области электроэнергетики. Технический результат - повышение эффективности при упрощении конструкции. Устройство для сброса гололедных отложений (1) с проводов (2) включает элемент (3) для импульсного встряхивания проводов, действующий от веса отложений на нем и встроенный в...
Тип: Изобретение
Номер охранного документа: 0002504880
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9921

Аналоговый мультиплексор

Изобретение предназначено для воспроизведения функций многозначной логики и может быть использовано в системах вычислительной техники как средство обработки многозначных данных. Техническим результатом является обеспечение реализации произвольной k-значной логической функции, зависящей от n...
Тип: Изобретение
Номер охранного документа: 0002504900
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9f7a

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки R>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и при температуре t, и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и...
Тип: Изобретение
Номер охранного документа: 0002506534
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a320

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что определяют ТКЧ мостовой цепи α  и α  при температуре t и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δα=α -α ). Если полученное значение Δα является...
Тип: Изобретение
Номер охранного документа: 0002507475
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a321

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α  и α  при температуре t и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δα=α -α...
Тип: Изобретение
Номер охранного документа: 0002507476
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a322

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки R>500кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α  и α  при температуре t и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и...
Тип: Изобретение
Номер охранного документа: 0002507477
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34f

Цифровой способ преобразования параметров индуктивных датчиков с использованием временной инверсии сигнала

Изобретение относится к измерительной технике. Способ заключается в возбуждении кратковременным электрическим импульсом в LC-контурах измерительного и опорного плеч датчика колебательных сигналов и аналого-цифровом преобразовании их в числовые массивы данных, временной инверсии путем...
Тип: Изобретение
Номер охранного документа: 0002507522
Дата охранного документа: 20.02.2014
+ добавить свой РИД