×
20.03.2015
216.013.3492

Результат интеллектуальной деятельности: УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ

Вид РИД

Изобретение

№ охранного документа
0002544933
Дата охранного документа
20.03.2015
Аннотация: Изобретение относится к устройству и способу для магнитного разделения текучей среды, которая содержит подлежащие отделению первые частицы из магнитного или намагничивающегося материала и вторые частицы из немагнитного или ненамагничивающегося материала. Устройство содержит по меньшей мере две магнитных системы для создания каждой магнитной индукции В, которые расположены соосно друг с другом относительно средней оси М, при этом соседние магнитные системы имеют противоположную систему полюсов и расположены на расстоянии d друг от друга для создания поля с точкой возврата. Устройство содержит по меньшей мере один питающий трубопровод для транспортировки текучей среды, продольная ось которого по меньшей мере в зоне магнитных систем проходит в ориентированной перпендикулярно средней оси М плоскости Е между соседними магнитными системами. По меньшей мере один питающий трубопровод в направлении транспортировки текучей среды имеет после средней оси М по меньшей мере одно разветвление. С помощью устройства осуществляется способ магнитного разделения текучей среды, содержащий следующие стадии: создание магнитной индукции, пропускание текучей среды по меньшей мере через один питающий трубопровод по меньшей мере между двумя магнитными системами, разделение текучей среды на по меньшей мере одну первую фазу и по меньшей мере одну вторую фазу, отделение по меньшей мере одной первой фазы от по меньшей мере одной второй фазы в зоне по меньшей мере одного разветвления. Технический результат - повышение эффективности магнитного разделения. 3 н. и 14 з.п. ф-лы, 6 ил.

Изобретение относится к устройству и способу для магнитного разделения текучей среды, которая содержит первые частицы из магнитного или намагничивающегося материала и, кроме того, вторые частицы из немагнитного или ненамагничивающегося материала.

Например, при добыче сырья в горной промышленности требуется выделять из добываемой породы частицы желаемого материала. Частицы материала при добыче руды часто являются частицами из магнитного или намагничивающегося материала, которые уже содержатся в руде, и/или агломератами частиц, которые возникают из немагнитных ценных минералов и дополнительно к этому из магнитных или намагничивающихся вспомогательных частиц. «Первыми частицами из магнитного или намагничивающегося материала» называются в последующем не только уже содержащиеся в руде частицы из магнитного или намагничивающегося материала, но также такие отделяемые с помощью магнитов агломераты частиц, содержащие вспомогательные частицы. Частицы ценных веществ, соответственно агломераты, содержащие частицы ценных веществ, необходимо отделять от неценных частиц из немагнитного или ненамагничивающегося материала.

«Рудой» называется более или менее сросшийся с жильной породой металлосодержащий минерал или смесь минералов. Под «жильной породой» понимаются сопутствующие материалы, которые встречаются вместе с рудными минералами, такие как кварц, кальцит, доломит и т.д. Уже содержащиеся в руде частицы из магнитного или намагничивающегося материала, такие как медь, железо и т.д., как правило, связаны с немагнитными или ненамагничивающимися частицами из жильной породы и должны быть отделены от них.

Руду, как правило, размельчают и подают в устройство, которое выполняет отделение частиц ценного материала. Для этого размельченную руду в большинстве случаев псевдоожижают. Образуемая текучая среда является либо суспензией, в которой частицы руды диспергированы в жидкости, либо аэрозолем, в котором частицы руды диспергированы в газе. Суспензии, которые создаются в горной промышленности при добыче руд, называются также шламами.

В уже известных способах магнитного разделения используется то, что в подходящей системе магнитного поля, соответственно системе магнитной индукции на магнитную или намагничивающуюся частицу, воздействует сила, которая перемещает, соответственно, удерживает ее с преодолением других воздействующих сил. Такими силами являются, например, сила тяжести или гидродинамические силы трения в протекающей жидкой среде. Действующая при магнитной индукции В на магнитную или намагничивающуюся частицу магнитная сила пропорциональна произведению из магнитной индукции В и составляющей градиента магнитной индукции В в направлении магнитной индукции В.

Для обеспечения возможности выполнения наиболее эффективного разделения частиц текучие среды в виде суспензий подвергают предварительной химической обработке. В частности, под этим понимается такая обработка немагнитных частиц ценного материала руды, что они связываются с дополнительно добавляемыми магнитными или намагничивающимися вспомогательными частицами, такими как, например, магнетит, и могут быть отделены вместе с ними магнитным способом. Для этого поверхность немагнитных частиц избирательно снабжают функциональными группами, в сульфидных рудах, например, с помощью ксантогенатов. Если добавляемые магнитные или намагничивающиеся вспомогательные частицы снабжаются аналогичными функциональными группами, то эти функциональные слои могут вступать в стабильные связи друг с другом и тем самым приводить к образованию стабильных агломератов из магнитных, соответственно, намагничивающихся вспомогательных частиц и немагнитных частиц ценных материалов. Затем эти агломераты можно отделять в виде намагничивающихся отдельных частиц из суспензии.

В настоящее время в магнитных сепараторах используются как постоянные магниты, так и электромагниты.

Постоянные магниты применяются, например, в широко распространенных барабанных сепараторах, где они, совершая круговые движения в барабане, воздействуют на магнитные или намагничивающиеся частицы.

В DE 3120718 С1 раскрыт другой барабанный сепаратор для отделения и сортировки намагничивающихся веществ из содержащей намагничивающиеся и ненамагничивающиеся вещества смеси, при этом магнитная система магнитного сепаратора создает магнитное поле.

Использование электромагнитов известно, в частности, из так называемой высокоградиентной магнитной сепарации, в которой намагничивающиеся структуры, такие как иглы или лезвия, образуют решетку при электрически создаваемой, часто сначала гомогенной магнитной индукции В. Решетчатая структура создает локально сильно не гомогенную магнитную индукцию В с ярко выраженными градиентами.

В DE 3247557 А1 приведено описание устройства для высокоградиентной магнитной сепарации мельчайших намагничивающихся частиц из протекающей среды.

Недостатком таких высокоградиентных сепараторов является то, что часто для удаления отделенных магнитных или намагничивающихся частиц необходимо выключать магнитную индукцию В и выполнять процесс обратной промывки. За счет этого невозможна непрерывная работа.

Кроме того, было установлено, что недостатком работы устройств для магнитного разделения является также необходимость механического перемещения создающих магнитную индукцию В постоянных магнитов или электромагнитов во время процесса разделения, поскольку такие устройства часто проявляют неисправности.

В US 6120735 приведено описание способа и устройства для сортировки фракций клеток, содержащего двухполюсную или четырехполюсную магнитную систему.

В US 4961841 приведено описание устройства и способа для разделения частиц в гравитационном поле на основе различий их магнитных свойств и их плотности.

В US 5169006 приведено описание непрерывно работающего магнитного сепаратора, содержащего стержни с чередующимися зонами из немагнитного и ферромагнитного материала.

Задачей изобретения является создание улучшенного устройства и улучшенного способа для магнитного разделения текучей среды.

Задача решена для устройства для магнитного разделения текучей среды, которая содержит подлежащие отделению первые частицы из магнитного или намагничивающегося материала и, кроме того, вторые частицы из немагнитного или ненамагничивающегося материала, тем, что устройство содержит:

- по меньшей мере две магнитных системы для создания каждой магнитной индукции В, которые расположены соосно друг с другом относительно средней оси М, при этом соседние магнитные системы имеют противоположную систему полюсов и расположены на расстоянии d друг от друга для создания поля с точкой возврата, и

- по меньшей мере один питающий трубопровод для транспортировки текучей среды, продольная ось которого по меньшей мере в зоне магнитных систем проходит в ориентированной перпендикулярно средней оси М плоскости Е между соседними магнитными системами,

при этом по меньшей мере один питающий трубопровод, при рассматривании в направлении транспортировки текучей среды, имеет после средней оси М по меньшей мере одно разветвление, и

при этом поперечное сечение по меньшей мере одного питающего трубопровода расположено полностью в зоне, в которой произведение магнитной индукции В соответствующей магнитной системы и градиента GBr соответствующей магнитной индукции В является положительным, и при этом зона W одной стенки питающего трубопровода, которая находится на максимальном или минимальном перпендикулярном расстоянии r от средней оси М, проходит вдоль линии Р, на которой градиент GBr соответствующей магнитной индукции В равен нулю.

Под первой частицей из магнитного или намагничивающегося материала понимается здесь и в последующем не только уже содержащаяся в руде частица из магнитного или намагничивающегося материала, но также агломерат частиц, который образован по меньшей мере из одной частицы ценного вещества и по меньшей мере одной связанной с ней через функциональные слои магнитной или намагничивающейся вспомогательной частицы.

На основании противоположного расположения полюсов магнитных систем в обширной пространственной зоне создается радиальная магнитная индукция В с направленным параллельно направлению магнитной индукции В градиентом GBr. Создается известное из физики плазмы так называемое поле с точкой возврата (Cusp). См., например, F.F. Chen, «Introduction to Plasma Physics and Controlled Fusion», Second Edition, Volume 1: Plasma Physics, Plenum Press, New York, 1984, S. 45 или M. Kaneda, T. Tagawa, H. Ozoe «Convection Induced by a Cusp-Shaped Magnetic Field for Air in a Cube Heated From Above and Cooled From Below», Journal of Heat Transfer, Vol. 124, Feb. 2002, S. 17-25.

Задача решена для способа магнитного разделения текучей среды, которая содержит подлежащие отделению первые частицы из магнитного или намагничивающегося материала и, кроме того, вторые частицы из немагнитного или ненамагничивающегося материала, с применением устройства, согласно изобретению, тем, что выполняют следующие стадии:

- создания соответствующей магнитной индукции В с помощью по меньшей мере двух магнитных систем;

- пропускания текучей среды по меньшей мере через один питающий трубопровод по меньшей мере между двумя магнитными системами, при этом текучая среда разделяется по меньшей мере на одну первую фазу, содержащую преимущественно первые частицы, и по меньшей мере на одну вторую фазу, содержащую преимущественно вторые частицы, и

- отделения по меньшей мере одной первой фазы от по меньшей мере одной второй фазы в зоне по меньшей мере одного разветвления.

Устройство, согласно изобретению, и способ, согласно изобретению, обеспечивают возможность непрерывной, без помех, длительной работы при постоянно высокой производительности разделения. Поскольку устройство имеет особенно простую конструкцию и не содержит подвижных частей, не требуется или требуется лишь чрезвычайно небольшое техническое обслуживание. Поэтому потребность в персонале для работы устройства, согласно изобретению, является минимальной, а эксплуатационные расходы - небольшими. Пропускная способность подлежащей разделению текучей среды является в целом высокой, так что в единицу времени можно достигать более высокого выхода, чем с помощью обычных способов магнитной сепарации.

Согласно изобретению, поперечное сечение по меньшей мере одного питающего трубопровода расположено полностью в зоне, в которой произведение магнитной индукции В соответствующей магнитной системы и градиента GBr соответствующей магнитной индукции В является положительным, при этом зона W одной стенки питающего трубопровода, которая находится на максимальном или минимальном вертикальном расстоянии r от средней оси М, проходит вдоль линии Р, на которой градиент GBr соответствующей магнитной индукции В равен нулю. За счет этого первые частицы собираются в зоне W стенки трубопровода, не прилипая там. Поэтому первые частицы можно отводить также при очень небольшой скорости потока текучей среды по меньшей мере с одной первой фазой. Регулярную проверку по меньшей мере одного питающего трубопровода относительно уменьшения его поперечного сечения на основании отложения первых частиц, например, посредством измерения давления или визуального контролирования, можно вообще не проводить. За счет этого значительно повышается эффективность и производительность способа и устройства.

Предпочтительно, когда магнитные системы выполнены так, что они могут создавать одинаковую по величине магнитную индукцию В. В этом случае продольная ось по меньшей мере одного питающего трубопровода проходит предпочтительно на расстоянии d/2 между соседними магнитными системами.

В зоне W стенки питающего трубопровода предпочтительно расположено по меньшей мере одно фасонное тело из парамагнитного или ферромагнитного материала с относительной магнитной проницаемостью μ>1. Оно служит для повышения градиентов магнитного поля в зоне W стенки питающего трубопровода и улучшения отделения первой фазы от второй фазы. Фасонное тело предпочтительно выполнено в виде стержня и расположено своей продольной осью параллельно продольной оси по меньшей мере одного питающего трубопровода и в плоскости Е.

Предпочтительно, когда устройство имеет по меньшей мере три магнитных системы. Такое последовательное включение магнитных систем обеспечивает возможность использования расположенной между двумя магнитными системами магнитной системы два раза за счет расположения соответствующего по меньшей мере одного питающего трубопровода между этой магнитной системой и обеими соседними магнитными системами. За счет этого понижается стоимость устройства и повышается эффективность способа.

В одном предпочтительном варианте выполнения изобретения магнитные системы образованы с помощью электромагнитов, в частности, в виде магнитных кольцевых катушек. Для достижения требуемого противоположного расположения полюсов через соседние магнитные кольцевые катушки пропускают постоянный ток в противоположном направлении. При этом предпочтительно, когда для постоянных токов i1, i2 в двух смежно расположенных магнитных кольцевых катушках справедливо i1=-i2.

Магнитные кольцевые катушки предпочтительно выполнены с удлиненными, овальными витками катушки. В этом случае продольная ось по меньшей мере одного питающего трубопровода ориентирована параллельно продольной стороне овала витков катушки с целью достижения воздействия магнитной индукции В на текучую среду на возможно более длинном участке пути и улучшения производительности отделения.

Однако, в качестве альтернативного решения, магнитные системы могут быть образованы с помощью постоянных магнитов. При этом, как правило, они являются имеющими форму прямоугольного параллелепипеда блочными магнитами с высотой h, шириной b и длиной l, которые намагничены в направлении своей высоты h. Соседние постоянные магниты расположены так, что их северные полюса или южные полюса обращены друг к другу. Поскольку постоянные магниты нельзя изготавливать с любыми размерами, то вдоль длины l устанавливается n магнитов с целью обеспечения воздействия магнитной индукции В вдоль питающего трубопровода на возможно более длинном участке пути.

Предпочтительно, когда имеется по меньшей мере два питающих трубопровода, продольные оси которых в зоне магнитных систем проходят в ориентированной перпендикулярно средней оси М плоскости Е, в частности, на расстоянии d/2 между соседними магнитными системами. За счет этого удваивается количество текучей среды, которая подвергается обработке с помощью устройства.

По меньшей мере одно разветвление по меньшей мере одного питающего трубопровода предназначено для ответвления по меньшей мере одной первой фазы текучей среды, содержащей преимущественно первые частицы, по меньшей мере от одной второй фазы, содержащей преимущественно вторые частицы. Предпочтительно, по меньшей мере один питающий трубопровод разделен с помощью по меньшей мере одного разветвления на первую трубу для приема по меньшей мере одной первой фазы и вторую трубу для приема по меньшей мере одной второй фазы. При этом поперечное сечение первой трубы, в частности, пропорционально образуемому количеству первой фазы. Для получения более тонкого разделения текучей среды разветвление может разделять питающий трубопровод, естественно, более чем на две трубы.

В частности, периметр поперечного сечения по меньшей мере одного питающего трубопровода выполнен в виде прямоугольника, при этом одна продольная сторона прямоугольника ориентирована параллельно плоскости Е. Это поддерживает целенаправленное разделение текучей среды на первую и вторую фазы, в частности, при этом первая фаза скапливается с возможностью хорошего отделения в зоне W стенки питающего трубопровода.

Применение устройства, согласно изобретению, является идеальным для магнитного отделения магнитных или намагничивающихся первых частиц, содержащих руду, от немагнитных или ненамагничивающихся вторых частиц из жильной породы.

Ниже приводится более подробное пояснение устройства, согласно изобретению, и способа, согласно изобретению, со ссылками на прилагаемые фиг. 1-6, на которых изображено:

фиг.1 - поперечное сечение первого устройства с двумя магнитными системами в виде магнитных кольцевых катушек;

фиг.2 - часть первого устройства в зоне одного из двух питающих трубопроводов во время магнитного разделения, в увеличенном масштабе;

фиг.3 - разрез первого устройства в зоне плоскости Е, на виде сверху;

фиг.4 - поперечное сечение первого устройства с магнитными системами в виде постоянных магнитов;

фиг.5 - часть второго устройства, согласно фиг.4, в изометрической проекции;

фиг.6 - поперечное сечение второго устройства с тремя магнитными системами в виде магнитных кольцевых катушек.

На фиг.1 показано поперечное сечение первого устройства 1 для магнитного разделения текучей среды 2, которая содержит подлежащие отделению первые частицы 3а из магнитного или намагничивающегося материала и, кроме того, вторые частицы 3b из немагнитного или ненамагничивающегося материала (см. фиг.2). Первое устройство 1 содержит две одинаковые магнитные системы 10, 20 в виде электромагнитов, в данном случае в виде магнитных кольцевых катушек, для создания каждой магнитной индукции В. Обе магнитные системы 10, 20 расположены на расстоянии d друг от друга и соосно друг с другом относительно средней оси М, при этом предусмотрена противоположная система полюсов. Это достигается тем, что через магнитные кольцевые катушки проходят противоположно токи i1, i2. Необходимые для магнитных кольцевых катушек токоподводы здесь и на других фигурах не изображены для обеспечения наглядности.

Предпочтительно в данном случае справедливо i1=-i2. В этом случае создаваемые магнитными кольцевыми катушками магнитные индукции В одинаковы по величине и направлены в зоне средней оси М противоположно друг другу. Северные полюса магнитных систем 10, 20 обращены, каждый, к питающим трубопроводам 4, 4', которые расположены между обеими магнитными системами 10, 20. Образуется поле с точкой возврата (Cusp). При увеличении расстояния r от средней оси М магнитные индукции В имеют, в частности в зоне между магнитными кольцевыми катушками, преимущественно радиальные составляющие, при этом магнитная индукция В имеет сначала положительный в радиальном направлении градиент GBr. С увеличением расстояния r от средней оси М достигается линия Р, на которой градиент GBr=0. После этого градиент GBr изменяет знак и становится отрицательным.

Оба питающих трубопровода 4, 4' служат для транспортировки текучей среды 2, в данном случае, например, суспензии на водной основе, содержащей первые и вторые частицы 3а, 3b, исходя из плоскости листа в направлении наблюдателя, со скоростью u. Продольные оси LFL, LFL' питающих трубопроводов 4, 4' (см. фиг.3) проходят в зоне магнитных систем 10, 20 в ориентированной перпендикулярно средней оси М плоскости Е на расстоянии d/2 между соседними магнитными системами 10, 20. Поперечное сечение каждого питающего трубопровода 4, 4' полностью расположено в зоне, в которой произведение магнитной индукции В соответствующей магнитной системы 10, 20 и градиента GBr соответствующей магнитной индукции В является положительным.

Зона W стенки питающего трубопровода 4, 4', которая находится на максимальном перпендикулярном расстоянии от средней оси М, проходит вдоль линии Р, на которой градиент GBr соответствующей магнитной индукции В равен нулю.

В зоне W стенки питающих трубопроводов 4, 4' для увеличения градиентов магнитного поля расположено фасонное тело 7, 7' из парамагнитного или ферромагнитного материала с относительной магнитной проницаемостью μ>1. Фасонное тело 7, 7' выполнено в виде стержня и расположено своей продольной осью параллельно продольной оси LFL, LFL' питающих трубопроводов 4, 4' и в плоскости Е.

На фиг.2 показана в увеличенном масштабе часть первого устройства 1 в зоне питающего трубопровода 4' справа на фигуре при работе первого устройства 1. Во время магнитного разделения с помощью первого устройства 1 через магнитные системы 10, 20 протекают противоположно токи i1=-i2, и магнитные индукции В создают поле с точкой возврата. Текучая среда 2 транспортируется через питающие трубопроводы 4, 4', при этом она со скоростью u перемещается между обеими магнитными системами 10, 20. При этом текучая среда 2 проходит в питающих трубопроводах 4, 4' в одинаковом направлении. При этом текучая среда 2 разделяется на первую фазу 2а, содержащую преимущественно первые частицы 3а, и вторую фазу 2b, содержащую преимущественно вторые частицы 3b. Направленная радиально наружу магнитная сила приводит к тому, что первые частицы 3а собираются в зоне W стенки соответствующего питающего трубопровода 4, 4', которая находится на максимальном перпендикулярном расстоянии r от средней оси М. Поскольку магнитная сила здесь приблизительно равна нулю, соответственно, GBr=0, то происходит скопление первых частиц у стенки питающих трубопроводов 4, 4'. Точнее, первая фаза 2а с первыми частицами 3а транспортируется дальше с потоком. При этом в питающих трубопроводах 4, 4' происходит, в частности, ламинарное течение с целью предотвращения перемешивания снова уже разделенных первой и второй фаз 2а, 2b. Затем можно механически отделять первую фазу 2а от второй фазы 2b.

На фиг.3 показано первое устройство 1 на виде сверху на питающие трубопроводы 4, 4' и одну из магнитных систем 20, в разрезе в плоскости Е. Можно видеть, что магнитные кольцевые катушки выполнены с удлиненными, овальными витками катушки, и продольные оси LFL, LFL' обоих питающих трубопроводов 4, 4' ориентированы параллельно продольной стороне овала витков катушки. За счет этого обеспечивается воздействие магнитных индукций В на возможно более длинном участке пути в питающих трубопроводах 4, 4' на соответствующую протекающую текучую среду 2.

Питающие трубопроводы 4, 4' имеют, каждый, при рассматривании в направлении транспортировки текучей среды 2, после средней оси М, в данном случае дополнительно после выхода из промежуточного пространства между магнитными системами 10, 20, разветвление 6, 6'. Там питающие трубопроводы 4, 4' разделяются, каждый, на первую трубу 5а, 5а' для приема первой фазы 2а и вторую трубу 5b, 5b' для приема второй фазы 2b. При этом поперечное сечение первой трубы 5а, 5а' предпочтительно пропорционально образуемому количеству первой фазы 2а с целью обеспечения возможно более точного отделения первой фазы 2а (см. фиг.2).

На фиг.4 показано в поперечном сечении второе устройство 1' с магнитными системами 100, 200 в виде конструктивно одинаковых постоянных магнитов. Имеющие форму прямоугольного параллелепипеда так называемые блочные магниты с высотой h, шириной b и длиной l намагничены в направлении высоты h и расположены так, что их магнитные северные полюсы N лежат противоположно друг другу, а их магнитные южные полюсы S обращены друг от друга. Конфигурация магнитных индукций В соответствует конфигурации первого устройства 1, согласно фиг.1. Принцип действия второго устройства 1' также аналогичен принципу действия первого устройства 1.

Поскольку блочные магниты нельзя изготавливать с любыми размерами, то число n магнитов длины l расположены в ряд друг за другом в продольном направлении, т.е. параллельно плоскости Е, так что возникают магнитные системы 100, 200 общей длины Lg=n*l. Это показано на фиг.5, где для пояснения изображена такая система, соответственно, часть второго устройства, согласно фиг.4, в изометрической проекции. При этом для лучшей наглядности не изображено фасонное тело из парамагнитного или ферромагнитного материала. Магнитная система 100 состоит, согласно фиг.5, из n=2 постоянных магнитов 100а, 100b с длиной l каждый. Магнитная система 200 состоит, согласно фиг.5, из n=2 постоянных магнитов 200а, 200b с длиной l каждый.

На фиг.6 показано в поперечном сечении третье устройство 1" для магнитного разделения текучей среды 2, которая содержит подлежащие отделению первые частицы 3а из магнитного или намагничивающегося материала и, кроме того, вторые частицы 3b из немагнитного или ненамагничивающегося материала (см. также фиг.2). Третье устройство 1" содержит три магнитные системы 10, 20, 30 в виде электромагнитов, в данном случае в виде магнитных кольцевых катушек, для создания соответствующей магнитной индукции В. Магнитные системы 10, 20, 30 расположены на расстоянии d друг от друга и относительно средней оси М расположены соосно друг другу, при этом предусмотрено противоположное расположение полюсов для создания полей с точкой возврата. Это достигается тем, что через магнитные кольцевые катушки проходят противоположно токи i1, i2, i3. При этом предпочтительно i1=-i2=i3. В этом случае создаваемые магнитными кольцевыми катушками магнитные индукции В имеют одинаковую величину и в зоне средней оси М направлены противоположно друг другу. Таким образом, северные полюсы магнитных систем 10, 20 обращены к питающим трубопроводам 4, 4', которые расположены между обеими магнитными системами 10, 20. Таким образом, верхняя половина третьего устройства 1", содержащая магнитные системы 10, 20, соответствует конструкции, согласно фиг.1-3. При увеличении расстояния r от средней оси М магнитные индукции В магнитных систем 10, 20 имеют, в частности в зоне между магнитными кольцевыми катушками, преимущественно радиальные составляющие, при этом магнитная индукция В имеет сначала положительный в радиальном направлении градиент GBr. С увеличением расстояния r от средней оси М достигается линия Р, на которой градиент GBr=0. После этого градиент GBr изменяет знак и становится отрицательным.

В противоположность этому, к питающим трубопроводам 40, 40', которые расположены между обеими магнитными системами 20, 30, обращены южные полюсы магнитных систем 20, 30. При увеличении расстояния r от средней оси М магнитные индукции В магнитных систем 20, 30 имеют, в частности, в зоне между магнитными кольцевыми катушками, преимущественно указывающие в направлении средней оси составляющие, при этом магнитная индукция В имеет сначала положительный градиент GBr. С увеличением расстояния r от средней оси М достигается линия Р, на которой градиент GBr=0. После этого градиент GBr изменяет знак и становится отрицательным.

Четыре питающих трубопровода 4, 4'; 40, 40' служат для транспортировки текучей среды 2, в данном случае, например, суспензии на водной основе, исходя из плоскости листа в направлении наблюдателя, со скоростью u. Продольные оси LFL, LFL' питающих трубопроводов 4, 4' (см. фиг.3) проходят в зоне магнитных систем 10, 20 в ориентированной перпендикулярно средней оси М плоскости Е на расстоянии d/2 между соседними магнитными системами 10, 20. Не изображенные продольные оси питающих трубопроводов 40, 40' проходят в зоне магнитных систем 20, 30 в ориентированной перпендикулярно средней оси М плоскости Е на расстоянии d/2 между соседними магнитными системами 20, 30.

Поперечное сечение каждого питающего трубопровода 4, 4'; 40, 40' полностью расположено в зоне, в которой произведение магнитной индукции В соответствующей магнитной системы 10, 20; 20, 30 и градиента GBr соответствующей магнитной индукции В является положительным. Зоны W стенок питающих трубопроводов 4, 4', которые находятся на максимальном перпендикулярном расстоянии r от средней оси М, проходят вдоль линии Р, на которой градиент GBr соответствующей магнитной индукции В равен нулю. Зоны W стенок питающих трубопроводов 40, 40', которые находятся на минимальном перпендикулярном расстоянии r от средней оси М, проходят вдоль линии Р, на которой градиент GBr соответствующей магнитной индукции В равен нулю.

Таким образом, если северные полюсы двух соседних магнитных систем направлены друг к другу, то зона W стенки питающего трубопровода (трубопроводов), которая проходит вдоль линии Р, обращена от средней оси М и находится на максимальном расстоянии r от нее. В противоположность этому, если южные полюсы двух соседних магнитных систем направлены друг к другу, то зона W стенки питающего трубопровода, которая проходит вдоль линии Р, обращена к средней оси М и находится на минимальном расстоянии r от нее. При нескольких включенных друг за другом магнитных системах с противоположным расположением полюсов, при рассматривании в поперечном сечении, поперечные сечения питающих трубопроводов, при рассматривании от средней оси М, лежат один раз внутри линии Р и один раз снаружи линии Р.

На фиг.1-6 показаны лишь примеры устройств и способов, согласно изобретению. Так, устройство может иметь любое количество магнитных систем в виде электромагнитов или, в качестве альтернативного решения, постоянных магнитов. Можно применять также комбинацию магнитных систем в виде электромагнитов и постоянных магнитов, когда они работают с противоположным расположением полюсов и предпочтительно создают примерно одинаковую по величине магнитную индукцию В. Фасонные тела из парамагнитного или ферромагнитного материала с относительной магнитной проницаемостью μ>1 можно использовать как в устройствах, которые имеют магнитные системы в виде электромагнитов, как показано на фиг.1, 3 и 6, так и в устройствах, которые имеют магнитные системы в виде постоянных магнитов, как показано на фиг.4 и 5. Кроме того, форма электромагнитов или постоянных магнитов может быть выбрана свободно в широких пределах, однако для улучшения производительности разделения устройства и способа предпочтительно, когда зона W стенки по меньшей мере одного питающего трубопровода проходит возможно более длинный участок пути вдоль линии Р.


УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ
УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ
УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ
УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ
УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ
УСТРОЙСТВО И СПОСОБ ДЛЯ МАГНИТНОГО РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СРЕДЫ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 1 427.
27.10.2014
№216.013.011e

Устройство сепарации намагничиваемых частиц из суспензии

Изобретение относится к сепарации намагничиваемых частиц. Устройство сепарации намагничиваемых частиц из суспензии, представляющей собой поток веществ, содержащий металлические и неметаллические компоненты и обладающий заданным массовым потоком включает, в себя цилиндрически симметричный...
Тип: Изобретение
Номер охранного документа: 0002531684
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.013c

Система горелки для установки для сжигания топлива в виде текучей среды и способ работы такой системы горелки

Изобретение относится к области энергетики. Система горелки для сжигания топлива в виде текучей среды имеет ступицу, по меньшей мере один подводящий воздух канал и для каждого вида топлива по меньшей мере один подводящий топливо канал (9, 12, 13, 16), при этом по меньшей мере один подводящий...
Тип: Изобретение
Номер охранного документа: 0002531714
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0140

Соединительный механизм, клапан и исполнительный механизм

Изобретение относится к соединительному механизму и направлено на удобное соединение компонентов. Соединительный механизм для соединения первого компонента и второго компонента содержит захватную часть, соединительную часть и фиксирующую часть. Захватная часть имеет первую соединяющую часть и...
Тип: Изобретение
Номер охранного документа: 0002531718
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.02aa

Узел турбокомпрессора с охлаждающей системой

Узел (10) турбокомпрессора разделен вдоль оси (12) ротора (11) на три секции (13, 18, 22): опорную (13), (18) двигателя и (22) компрессора. Опорная секция (13) имеет по меньшей мере один активный магнитный подшипник (14) для опоры ротора (11). Секция (18) двигателя содержит двигатель (19),...
Тип: Изобретение
Номер охранного документа: 0002532080
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.03fb

Контроль температуры для шинной распределительной системы

Использование: в области электротехники. Шинная распределительная систем (1) включает в себя множество соединенных друг с другом, одно- или многофазных модульных отрезков (2) шинопровода, к шинной распределительной системе подключены несколько ответвительных коробок (3) и/или электрических...
Тип: Изобретение
Номер охранного документа: 0002532417
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0485

Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением, по меньшей мере, одного получаемого газа

Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или...
Тип: Изобретение
Номер охранного документа: 0002532555
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04c2

Анализ поверхности для обнаружения закрытых отверстий и устройство

Способ анализа поверхности подлежащих открыванию по меньшей мере частично закрытых отверстий конструктивного элемента после нанесения покрытия, в котором конструктивный элемент измеряют с незакрытыми отверстиями в состоянии без покрытия и генерируют модель маски с помощью измерения посредством...
Тип: Изобретение
Номер охранного документа: 0002532616
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04d5

Аккумуляция электроэнергии тепловым аккумулятором и обратное получение электроэнергии посредством термодинамического кругового процесса

Способ использования избыточных мощностей электрической сети заключается в том, что в случае превышения предложения над спросом на энергию ее отводят через нагревательный элемент непосредственно в тепловой аккумулятор и в случае разрядки этого теплового аккумулятора от него отбирают тепло и...
Тип: Изобретение
Номер охранного документа: 0002532635
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.066c

Горелка, в частности, для газовых турбин

Горелка выполнена с центральной компоновкой подачи топлива и охватывающим центральную компоновку подачи топлива кольцевым воздушным каналом для подачи топочного воздуха и с расположенными в кольцевом воздушном канале вихревыми лопатками, имеющими первые газовые форсунки для впрыскивания...
Тип: Изобретение
Номер охранного документа: 0002533045
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.06a3

Детектор опасности для работы в ядерной сфере, имеющий нагревательную систему для нагрева типично не-радиационно-устойчивых полупроводниковых компонентов для увеличения функционального срока службы

Детектор опасности для работы в ядерной сфере, имеющий нагревательную систему для нагрева типично не-радиационно-устойчивых полупроводниковых компонентов для увеличения функционального срока службы. Изобретение относится к детектору (1) опасности, в частности детектору дыма для работы в зоне...
Тип: Изобретение
Номер охранного документа: 0002533100
Дата охранного документа: 20.11.2014
Показаны записи 281-290 из 944.
20.08.2014
№216.012.ec6b

Привод хвостового винта вертолета

Изобретение относится к области авиации, в частности к конструкции хвостовых винтов вертолетов. Хвостовой винт (12) вертолета (10) имеет привод (1), содержащий электрическую машину с поперечным магнитным потоком с возбуждением от постоянных магнитов с дуплексным расположением статоров. Между...
Тип: Изобретение
Номер охранного документа: 0002526331
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec94

Способ распознавания загрязнения и/или образования росы на компонентах преобразователя частоты переменного тока с промежуточным контуром напряжения

Изобретение относится к области электротехники и может быть использовано при распознавании загрязнения и/или образования росы на компонентах преобразователя частоты переменного тока с промежуточным контуром напряжения. Техническим результатом являетcя возможность распознавать степень...
Тип: Изобретение
Номер охранного документа: 0002526372
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec96

Способ запирания выпрямителя переменного тока с распределенными накопителями энергии

Использование: в области электротехники. Технический результат - снижение нагрузки по напряжению. Изобретение относится к способу запирания выпрямителя (2) переменного тока с распределенными накопителями (C) энергии с по меньшей мере двумя модулями (4, 4, 4) фаз, которые имеют соответствующие...
Тип: Изобретение
Номер охранного документа: 0002526374
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecc0

Устройство для монтажа элемента теплозащитного экрана

Изобретение касается монтажного устройства, предназначенного для монтажа теплозащитного экрана. Монтажное устройство для монтажа, выполненного плоскостным, элемента (14) теплозащитного экрана, содержащего множество элементов теплозащитного экрана, установленных рядом друг с другом, с помощью...
Тип: Изобретение
Номер охранного документа: 0002526416
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed96

Способ для определения момента времени загрузки для загрузки расплавляемого материала в электродуговую печь, устройство обработки сигналов, машиночитаемый программный код, носитель для хранения данных и электродуговая печь

Изобретение относится к электродуговой печи, устройству обработки сигналов, носителю для хранения данных, машиночитаемому программному коду и способу для определения момента времени загрузки для загрузки, в особенности дозагрузки, расплавляемого материала (9), в особенности скрапа, в...
Тип: Изобретение
Номер охранного документа: 0002526641
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee75

Сенсорное устройство для тока подшипника с преобразователем энергии

Изобретение относится к сенсорному устройству для монтирования на вал электрической машины с регистрирующим устройством для регистрации тока подшипника электрической машины. Технический результат заключается в создании компактного сенсорного устройства, независимого от внешнего...
Тип: Изобретение
Номер охранного документа: 0002526864
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f0f7

Способ восстановления лопатки турбины, снабженной по меньшей мере одной платформой

Изобретение относится к области ремонта лопаток газовой турбины, снабженной по меньшей мере одной платформой, которая вследствие коррозионного воздействия по меньшей мере на одной боковой поверхности платформы имеет недостаточный размер. При этом нанесение материала по меньшей мере на одну...
Тип: Изобретение
Номер охранного документа: 0002527509
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f395

Система валогенератора

Изобретение относится к области электротехники и может быть использовано в системе валогенератора. Технический результат - обеспечение динамического ограничения сетевого короткого замыкания. Система валогенератора содержит валогенератор (18), в котором предусмотрен инвертор (42) с промежуточным...
Тип: Изобретение
Номер охранного документа: 0002528180
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3ba

Система элементов теплозащитного экрана и способ монтажа элемента теплозащитного экрана

Система (1) элементов теплозащитного экрана, включающая один элемент (3) теплозащитного экрана для расположенного на несущей структуре (30) теплозащитного экрана, и способ ее монтажа. Элемент (3) теплозащитного экрана на каждой из двух проходящих параллельно монтажным пазам (40) противоположных...
Тип: Изобретение
Номер охранного документа: 0002528217
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f45b

Устройство для аккумулирования электроэнергии, включающее батарею оксидно-ионных аккумуляторных элементов и модульные конфигурации

Заявленное изобретение относится к перезаряжаемому устройству для аккумулирования электроэнергии. При этом в одном из вариантов осуществления используется электролит с анионной проводимостью и перенос ионов между двумя электродами, где один из электродов предпочтительно является металлическим...
Тип: Изобретение
Номер охранного документа: 0002528388
Дата охранного документа: 20.09.2014
+ добавить свой РИД