×
20.03.2015
216.013.3467

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки поверхности исследуемого изотропного материала. Перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого и эталонного материала с постоянной скоростью по криволинейной траектории. При этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими. После чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала. Применяют разностную модель с использованием неявных схем. Решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 6 ил.
Основные результаты: Способ измерения пространственного распределения теплофизических параметров изотропных материалов, включающий тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала, измерение тепловизионным приемником радиационной температуры во всех точках пространственной сетки поверхности исследуемого изотропного материала, расчет математической модели прямой задачи теплопроводности на основе метода конечных разностей, отличающийся тем, что осуществляют равномерный нагрев поверхности исследуемого изотропного материала от инфракрасного источника нагрева, применяют несколько эталонных материалов для оценки неизвестных параметров математической модели, размещают инфракрасный источник нагрева перед тепловизионным приемником на заданном расстоянии друг от друга и высоте от исследуемого/эталонных изотропного материала так, чтобы отраженное от поверхности изотропного материала тепловое излучение от инфракрасного источника нагрева не попадало в объектив тепловизионного приемника, перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого/эталонных материала с постоянной скоростью по криволинейной траектории, заданной в зависимости от формы исследуемого изотропного материала и задач контроля его теплофизических параметров, при этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими параметрами - температуропроводностью и теплопроводностью, после чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала, применяют разностную модель с использованием неявных схем: на основании численного решения данной системы уравнений получают дискретную функцию зависимости температуры на поверхности исследуемого изотропного материала от времени: ,решают оптимизационную параметрическую задачу для каждого из N эталонных материалов с разными коэффициентами температуропроводности и теплопроводности в наименьшей измеряемой точке: находят из минимума невязки численные оценки и , вычисляют усредненное оценочное значение теплофизических параметров: ; ; ; ,решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения: определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта и , где: - температуропроводность исследуемого изотропного материала;λ - теплопроводность исследуемого изотропного материала; - оцененное значение температуропроводности исследуемого изотропного материала; - оцененное значение теплопроводности исследуемого изотропного материала; - температуропроводность эталонных изотропных материалов;λ - теплопроводность эталонных изотропных материалов; - сеточная функция;ε - коэффициент излучения;k - номер отсчета для сеточной функции по времени, где ;k, k - начальные и конечные номера отсчетов, соответствующие времени начала и окончания наблюдения;τ, τ - момент времени начала и окончания наблюдения;Δτ - шаг сетки по времени;m - номер отсчета для сеточной функции по пространству, где ;Δx, Δx - шаг сетки по расстоянию;E - плотность теплового потока от инфракрасного источника нагрева, отнесенная к единице площади поперечного сечения пространственной сетки;α - коэффициент теплоотдачи, отнесенный к единице площади поперечного сечения пространственной сетки;J - функционал невязки;N - количество эталонных изотропных материалов; - разность между температурой поверхности исследуемого изотропного материала и температурой окружающей среды в каждой точке пространства разрешения исследуемого изотропного материала в соответствие с растром изображения; - разность между температурой поверхности эталонного изотропного материала и температурой окружающей среды в наименьшей измеряемой точке пространства разрешения эталонного изотропного материала в соответствие с растром изображения; - значение разности температур, рассчитанное дискретной математической моделью, с учетом исследуемого изотропного материала;i, j - номера отсчетов пространственной сетки поверхности исследуемого изотропного материала, где , ;I×J - растр изображения;d - заданное расстояние между инфракрасным источником нагрева и тепловизионным приемником; - оцененное значение коэффициента теплового потока; - оцененное значение коэффициента теплоотдачи; - усредненное оцененное значение коэффициента теплового потока; - усредненное оцененное значение коэффициента теплоотдачи;n - порядковый номер.

Предлагаемое изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов методом активного теплового неразрушающего контроля, заключающимся в измерении пространственного распределения теплофизических параметров изотропного материала с применением теплового воздействия от инфракрасного источника нагрева на поверхность изотропного материала и дистанционным измерением тепловизионным приемником радиационной температуры во всех точках пространственной сетки видимой поверхности исследуемого изотропного материала.

Известен способ определения теплофизических параметров (температуропроводности), заключающийся в том, что исследуемый образец нагревают точечным источником тепла постоянной мощности, измеряют температуру поверхности образца датчиком температуры при взаимном относительном перемещении по прямой линии образца и датчика, жестко связанного с источником тепла, измеряют амплитудное значение импульсного сигнала датчика, определяют скорость перемещения источника тепла и зависимости координат точки визирования датчика от времени (авторское свидетельство СССР №1695203, МПК G01N 25/18 (2006.01), 30.11.1991).

Недостатком этого способа является значительная методическая погрешность измерения теплофизических параметров, связанная с использованием в математической модели упрощенных тепловых моделей рассматриваемых физических процессов.

Известен наиболее близкий к данному техническому решению способ идентификации скрытых подповерхностных объектов в грунте (патент РФ №2395074 C2, МПК G01N 25/18 (2006.01), 20.07.2010), заключающийся в том, что осуществляют тепловое воздействие от инфракрасного источника нагрева на поверхность грунта, измеряют радиационную температуру на поверхности грунта, рассчитывают математическую модель прямой задачи теплопроводности на основе метода конечных разностей, при этом производят измерение радиационной температуры во всех точках пространственной сетки зондируемой (исследуемой) поверхности при нагреве грунта в течение 90 с и последующем остывании в течение 90 с и применяют для восстановления температурного поля по глубине прогрева одномерную промежуточную сеточную функцию источника нагрева на поверхности грунта.

Недостатком данного способа является низкая точность измерения теплофизических параметров (температуропроводности и теплопроводности), ограниченная зондируемой поверхностью грунта, определяемая растром изображения тепловизионного приемника, а также большие вычислительные затраты (длительное время вычисления искомых значений теплофизических параметров), связанные с применением в используемых математических моделях разностных аппроксимаций, построенных на основе явных схем.

Задачей предлагаемого изобретения является уменьшение методической погрешности измерения теплофизических параметров на основе применения нескольких эталонных изотропных материалов, увеличение зондируемой поверхности исследуемого изотропного материала за счет движения по криволинейной траектории датчиков инфракрасного источника нагрева и тепловизионного приемника, сокращение времени вычисления искомых значений теплофизических параметров.

Техническим результатом изобретения является повышение точности измерения пространственного распределения теплофизических параметров изотропных материалов и сокращение времени вычисления искомых значений теплофизических параметров за счет использования неявных разностных схем.

Поставленный технический результат достигается тем, что в способе измерения пространственного распределения теплофизических параметров изотропных материалов, включающем тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала, измерение тепловизионным приемником радиационной температуры во всех точках пространственной сетки поверхности исследуемого изотропного материала, расчет математической модели прямой задачи теплопроводности на основе метода конечных разностей, осуществляют равномерный нагрев поверхности исследуемого изотропного материала от инфракрасного источника нагрева, применяют несколько эталонных материалов для оценки неизвестных параметров математической модели, размещают инфракрасный источник нагрева перед тепловизионным приемником на заданном расстоянии друг от друга и высоте от исследуемого/эталонных изотропного материала так, чтобы отраженное от поверхности изотропного материала тепловое излучение от инфракрасного источника нагрева не попадало в объектив тепловизионного приемника, перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого/эталонных материала с постоянной скоростью по криволинейной траектории, заданной в зависимости от формы исследуемого изотропного материала и задач контроля его теплофизических параметров, при этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими параметрами - температуропроводностью и теплопроводностью, после чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала, применяют разностную модель с использованием неявных схем:

на основании численного решения данной системы уравнений получают дискретную функцию зависимости температуры на поверхности исследуемого изотропного материала от времени:

,

решают оптимизационную параметрическую задачу для каждого из N эталонных материалов с разными коэффициентами температуропроводности и теплопроводности в наименьшей измеряемой точке:

;

находят из минимума невязки численные оценки и ,

вычисляют усредненное оценочное значение теплофизических параметров:

;

;

;

,

решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения:

;

определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта и , где:

a - температуропроводность исследуемого изотропного материала;

λ - теплопроводность исследуемого изотропного материала;

- оцененное значение температуропроводности исследуемого изотропного материала;

- оцененное значение теплопроводности исследуемого изотропного материала;

a Эп - температуропроводность эталонных изотропных материалов;

λЭп - теплопроводность эталонных изотропных материалов;

- сеточная функция;

ε - коэффициент излучения;

k - номер отсчета для сеточной функции по времени, где ;

kнач, kкон - начальные и конечные номера отсчетов, соответствующие времени начала и окончания наблюдения;

τнач, τкон - момент времени начала и окончания наблюдения;

Δτ - шаг сетки по времени;

m - номер отсчета для сеточной функции по пространству, где ;

Δx, Δx1 - шаг сетки по расстоянию;

E - плотность теплового потока от инфракрасного источника нагрева, отнесенная к единице площади поперечного сечения пространственной сетки;

α - коэффициент теплоотдачи, отнесенный к единице площади поперечного сечения пространственной сетки;

Ji,j - функционал невязки;

N - количество эталонных изотропных материалов;

- разность между температурой поверхности исследуемого изотропного материала и температурой окружающей среды в каждой точке пространства разрешения исследуемого изотропного материала в соответствии с растром изображения;

- разность между температурой поверхности эталонного изотропного материала и температурой окружающей среды в наименьшей измеряемой точке пространства разрешения эталонного изотропного материала в соответствии с растром изображения;

- значение разности температур, рассчитанное дискретной математической моделью, с учетом исследуемого изотропного материала;

i, j - номера отсчетов пространственной сетки поверхности исследуемого изотропного материала, где , ;

I×J - растр изображения;

d - заданное расстояние между инфракрасным источником нагрева и тепловизионным приемником;

- оцененное значение коэффициента теплового потока;

- оцененное значение коэффициента теплоотдачи;

- усредненное оцененное значение коэффициента теплового потока;

- усредненное оцененное значение коэффициента теплоотдачи;

n - порядковый номер.

Сущность изобретения заключается в следующем.

Поверхность исследуемого/эталонного изотропного материала нагревают тепловым потоком от инфракрасного источника нагрева. С помощью средств инфракрасной термографии измеряют радиационные температуры на поверхности изотропного материала в заданном интервале времени. Данный физический процесс в одномерном пространстве можно описать математической моделью нелинейной задачи теплопроводности (1) с учетом теплообмена исследуемого изотропного материала с окружающей средой:

T(x,0)=0, T(±∞,τ)→0,

граничные условия на поверхности исследуемого/эталонного изотропного материала:

где Tn - температура поверхности исследуемого изотропного материала и фона, h(τ) - ступенчатая функция, q(τ) - тепловой поток, a - коэффициент температуропроводности, λ(T) - нелинейная функция теплопроводности. Нелинейную задачу теплопроводности (7) при граничных условиях (8) решают методом конечных разностей. Система уравнений, аппроксимирующая неоднородное дифференциальное уравнение (7) и граничные условия (8), на основе использования неявных разностных схем будет иметь вид (1). Граничные условия аппроксимируют на основании выражения:

где λ - коэффициент теплопроводности, α - коэффициент теплоотдачи, a - коэффициент температуропроводности, h - ступенчатая функция, k - номер отсчета для сеточной функции по времени, T - значение радиационной температуры исследуемого изотропного материала и фона. При этом E и α отнесены к единицы площади поперечного сечения пространственной сетки и выражены в Вт/м2 и Дж/(м2·К) соответственно.

Сущность изобретения поясняется чертежами.

На фиг.1 представлена схема размещения инфракрасного источника нагрева перед тепловизионным приемником, которые располагают на таком расстоянии друг от друга, чтобы отраженное от поверхности исследуемого/эталонного изотропного материала тепловое излучение от инфракрасного источника нагрева не попадало в объектив тепловизионного приемника, и высоте от изотропного материала, определяемой наименьшей измеряемой точкой (точка B, фиг.1), и перемещают с постоянной скоростью υ по криволинейной траектории, где:

1 - тепловизионный приемник (ТПВП);

2 - инфракрасный источник нагрева (ИКИН);

3 - исследуемый/эталонный изотропный материал;

B - наименьшая измеряемая точка, расположенная в центре поверхности каждого из эталонных изотропных материалов;

S1 - площадь поверхности, попадаемая в объектив тепловизионного приемника;

S2 - площадь нагрева поверхности изотропного материала;

D1, D2 - ширина площадей S1 и S2 соответственно;

wv…wnvn - границы моментов включения и выключения инфракрасного источника нагрева соответственно;

υ - скорость перемещения ТПВП и ИКИН.

На фиг.2 приведены графики огибающих дискретных значений разности температур исследуемого/эталонного изотропного материала относительно температуры окружающей среды в координатах T-τ, где кривая A - график, построенный на основе математической модели; кривая C - график изменения разности между температурой поверхности исследуемого/эталонного изотропного материала и температурой окружающей среды на интервале времени [τнач, τкон] в точке B;

На фиг.3 представлена схема устройства, реализующая предлагаемый способ измерения пространственного распределения теплофизических параметров изотропных материалов, где:

1 - тепловизионный приемник;

2 - инфракрасный источник нагрева;

3 - исследуемый/эталонный изотропный материал;

4 - площадь поверхности исследуемого/эталонного материала, попадаемая в объектив тепловизионного приемника (S1);

5 - площадь нагрева поверхности исследуемого/эталонного изотропного материала (S2);

6 - запоминающее устройство;

7 - вычислительное устройство;

8 - блок формирования математической модели нагрева-остывания поверхности исследуемого/эталонного изотропного материала;

9 - блок вычислителя квадратичного отклонения;

10 - блок решения двухпараметрической оптимизационной задачи;

11 - блок управления криволинейным движением.

Устройство содержит исследуемый/эталонный изотропный материал 3 (используют N эталонных изотропных материалов), которые подвергают тепловому воздействию от инфракрасного источника нагрева 2 с площадью нагрева S2 и с шириной D2, движущегося криволинейно посредством команд от блока управления 11 с постоянной скоростью υ, обеспечивая равномерный нагрев поверхности исследуемого/эталонного изотропного материала, после чего тепловизионным приемником 1 регистрируют значения радиационных температур на поверхности исследуемого/эталонного материала площадью S1 с шириной D1, попадаемой в объектив тепловизионного приемника 1, в момент остывания во всех точках пространственной сетки в соответствии с растром изображения (I×J). Далее информация с тепловизионного приемника 1 поступает на запоминающее устройство 6 и на вычислительное устройство 7, где производится расчет разности температур поверхности исследуемого и N эталонных изотропных материалов относительно температуры окружающей среды. Блок 9 выполняет функцию вычисления квадратичного отклонения значений параметров математической модели, формируемых в блоке математической модели 8 от значений параметров, измеренных тепловизионным приемником 7. Блок 10 осуществляет решение двухпараметрической оптимизационной задачи с выводом матриц пространственного распределения оцененных значений теплофизических параметров и исследуемого изотропного материала 3.

Способ измерения пространственного распределения теплофизических параметров осуществляют в 2 этапа.

Первый этап заключается в оценке неизвестных параметров математической модели на основе использования N эталонных изотропных материалов 3, для чего инфракрасный источник нагрева 2, расположенный перед тепловизионным приемником на таком расстоянии d, чтобы отраженное от поверхности эталонных изотропных материалов тепловое излучение от инфракрасного источника нагрева 2 не попадало в объектив тепловизионного приемника 1, прямолинейно перемещают вместе с тепловизионным приемником 1 (либо тепловизионный приемник 1 размещают стационарно над поверхностью эталонных материалов 3 на высоте, определяемой наименьшей измеряемой точкой B) с постоянной скоростью и над поверхностью эталонных изотропных материалов. При этом инфракрасный источник нагрева 2 производит равномерный нагрев эталонных изотропных материалов 3, а с помощью тепловизионного приемника 1 измеряют радиационную температуру в одной из наименьшей измеряемой (точка B, фиг.1) в центре видимой поверхности каждого эталонного изотропного материала 3.

Наблюдение разности температур производят на интервале времени [τнач, τкон] (фиг.2).

Используя данные радиационных температур измеренных в одной из наименьшей измеряемой точке пространства разрешения каждого эталонного материала, решают оптимизационную задачу (2), в результате чего получают оцененные значения параметров математической модели и для каждого эталонного материала, после чего по формуле (3) и (4) вычисляют усредненное оцененное значение теплофизических параметров и .

Второй этап заключается в оценке теплофизических параметров в каждой точке пространства разрешения исследуемого изотропного материала 3. Для этого инфракрасный источник нагрева 2, расположенный перед тепловизионным приемником 1, перемещают по заданной криволинейной траектории (задается в зависимости от формы исследуемого изотропного материала и задач контроля его теплофизических параметров) вместе с тепловизионным приемником с постоянной скоростью υ над поверхностью исследуемого изотропного материала 3. Инфракрасный источник нагрева 2 производит равномерный нагрев поверхности исследуемого изотропного материала 3. При этом графики разности температур получают в каждой точке пространственного разрешения исследуемого изотропного материала 3 (фиг.2).

Решают оптимизационную параметрическую задачу (6) для исследуемого изотропного материала в каждой точке пространства разрешения, в результате чего получают пространственное распределение оцененных значений теплофизических параметров исследуемого изотропного материала:

температуропроводности

теплопроводности

Пример реализации способа.

При помощи вышеописанного устройства предложенный способ был апробирован для измерения пространственного распределения теплофизических параметров ряда изотропных материалов с известной теплопроводностью и температуропроводностью, заранее определенных стандартизированными методами. В ходе технической реализации способа υ было принято равным нулю, а количество эталонных материалов - единице. В качестве эталонного материала использовали кварцевый песок с теплопроводностью 0.9 Вт·м-1·К-1, температуропроводностью 9·10-7 м2·с-1. Исследованию подвергался кварцевый песок с размещенными в нем на глубине 10 мм двумя инородными объектами: алюминиевый брусок размером 3×3×1 см с теплопроводностью 237 Вт·м-1·К-1, температуропроводностью 8.418·10-5 м2·с-1 и полиспен размером 3×3×1 см с теплопроводностью 0.028 Вт·м-1·К-1, температуропроводностью 1·10-7 м2·с-1. ИК изображение поверхности исследуемого изотропного материала в момент времени 100 с после начала испытания с длительностью теплового воздействия 60 с представлено на фиг.4. В результате решения двухпараметрической оптимизационной задачи (2) были получены численные оценки коэффициента теплоотдачи α=10 Дж·м-2·К-1 и теплового потока E=2700 Вт·м-2. При этом параметры математической модели составили следующие значения β1=0.001, β2=10, Δτ=1 с, Δx=0.003 м, Δx1=0,00001 м, m=150, k=100 отсчетов. Используя полученные численные оценки для решения оптимизационной задачи (6) были получены матрицы распределения оцененных значений теплофизических параметров поверхности исследуемого изотропного материала и .:

;

.

Пространственное отображение распределения невязки во всех точках пространственной сетки поверхности исследуемого изотропного материала, представлено на (фиг.4), значений теплопроводности (фиг.5) и температуропроводности (фиг.6).

Погрешность измерения теплофизических параметров предложенным способом меньше, чем у рассмотренного способа-прототипа, так как погрешность аппроксимации неоднородного дифференциального уравнения с использованием явных схем, применяемых в способе-прототипе имеет погрешность первого порядка O(x), а для неявных схем, применяемых в предлагаемом способе, погрешность аппроксимации неоднородных дифференциальных уравнений имеет погрешность второго порядка O(x2) (см. Самарский А.А. Введение в численные методы - М.: Наука. Главная редакция физико-математической литературы, 1982. - 271 с.). Кроме того, применение нескольких эталонных материалов позволяет оценить значения неизвестных параметров математической модели, и, соответственно, увеличить точность вычисления искомых значений теплофизических параметров.

Зондируемая поверхность увеличивается в соответствии с перемещением по криволинейной траектории и зависит от времени движения средств инфракрасной термографии.

Неявные схемы требуют для решения неоднородных дифференциальных уравнений на один порядок меньше шагов вычисления по времени и соответственно вычислительных операций по сравнению с неявными схемами.

Способ измерения пространственного распределения теплофизических параметров изотропных материалов, включающий тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала, измерение тепловизионным приемником радиационной температуры во всех точках пространственной сетки поверхности исследуемого изотропного материала, расчет математической модели прямой задачи теплопроводности на основе метода конечных разностей, отличающийся тем, что осуществляют равномерный нагрев поверхности исследуемого изотропного материала от инфракрасного источника нагрева, применяют несколько эталонных материалов для оценки неизвестных параметров математической модели, размещают инфракрасный источник нагрева перед тепловизионным приемником на заданном расстоянии друг от друга и высоте от исследуемого/эталонных изотропного материала так, чтобы отраженное от поверхности изотропного материала тепловое излучение от инфракрасного источника нагрева не попадало в объектив тепловизионного приемника, перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого/эталонных материала с постоянной скоростью по криволинейной траектории, заданной в зависимости от формы исследуемого изотропного материала и задач контроля его теплофизических параметров, при этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими параметрами - температуропроводностью и теплопроводностью, после чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала, применяют разностную модель с использованием неявных схем: на основании численного решения данной системы уравнений получают дискретную функцию зависимости температуры на поверхности исследуемого изотропного материала от времени: ,решают оптимизационную параметрическую задачу для каждого из N эталонных материалов с разными коэффициентами температуропроводности и теплопроводности в наименьшей измеряемой точке: находят из минимума невязки численные оценки и , вычисляют усредненное оценочное значение теплофизических параметров: ; ; ; ,решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения: определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта и , где: - температуропроводность исследуемого изотропного материала;λ - теплопроводность исследуемого изотропного материала; - оцененное значение температуропроводности исследуемого изотропного материала; - оцененное значение теплопроводности исследуемого изотропного материала; - температуропроводность эталонных изотропных материалов;λ - теплопроводность эталонных изотропных материалов; - сеточная функция;ε - коэффициент излучения;k - номер отсчета для сеточной функции по времени, где ;k, k - начальные и конечные номера отсчетов, соответствующие времени начала и окончания наблюдения;τ, τ - момент времени начала и окончания наблюдения;Δτ - шаг сетки по времени;m - номер отсчета для сеточной функции по пространству, где ;Δx, Δx - шаг сетки по расстоянию;E - плотность теплового потока от инфракрасного источника нагрева, отнесенная к единице площади поперечного сечения пространственной сетки;α - коэффициент теплоотдачи, отнесенный к единице площади поперечного сечения пространственной сетки;J - функционал невязки;N - количество эталонных изотропных материалов; - разность между температурой поверхности исследуемого изотропного материала и температурой окружающей среды в каждой точке пространства разрешения исследуемого изотропного материала в соответствие с растром изображения; - разность между температурой поверхности эталонного изотропного материала и температурой окружающей среды в наименьшей измеряемой точке пространства разрешения эталонного изотропного материала в соответствие с растром изображения; - значение разности температур, рассчитанное дискретной математической моделью, с учетом исследуемого изотропного материала;i, j - номера отсчетов пространственной сетки поверхности исследуемого изотропного материала, где , ;I×J - растр изображения;d - заданное расстояние между инфракрасным источником нагрева и тепловизионным приемником; - оцененное значение коэффициента теплового потока; - оцененное значение коэффициента теплоотдачи; - усредненное оцененное значение коэффициента теплового потока; - усредненное оцененное значение коэффициента теплоотдачи;n - порядковый номер.
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 374.
13.01.2017
№217.015.85ee

Устройство и способ исследования воздействия факторов космического пространства на вещества и микроорганизмы

Группа изобретений относится к инструментам и технологиям исследования воздействия факторов космического пространства на вещества и микроорганизмы. Устройство состоит из корпуса (1), выполненного, например, из фторопласта. В полость (2) корпуса (одну или более) с резьбой (3) и конической...
Тип: Изобретение
Номер охранного документа: 0002603817
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86a4

Способ моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и имитационный состав для его реализации (варианты)

Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике. Описан способ моделирования процессов биокоррозионных поражений...
Тип: Изобретение
Номер охранного документа: 0002603797
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87c0

Способ поиска и обнаружения микроорганизмов в космическом пространстве

Изобретение относится к экспериментальным исследованиям в космическом пространстве. Способ включает взятие проб с помощью стерилизованного и гермоизолированного на Земле пробозаборника. Пробы берут с поверхности искусственного космического объекта, размещаемого в зонах эквидистантных точек...
Тип: Изобретение
Номер охранного документа: 0002603706
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a8e

Способ формирования управляющих воздействий на космический аппарат с фазированной антенной решёткой

Способ формирования управляющих воздействий на космический аппарат включает в себя определение силы, действующей на рабочую поверхность от давления поглощённого и отражённого света. Также способ включает в себя определение момента времени формирования управляющих воздействий значения силы. На...
Тип: Изобретение
Номер охранного документа: 0002604268
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e7f

Разъемное соединение

Изобретение относится к разъемным соединениям и предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей, и может быть использовано в машиностроении. В разъемном соединении, состоящем из бортового штуцера с...
Тип: Изобретение
Номер охранного документа: 0002605278
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e93

Способ управления транспортной космической системой

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L или L системы Земля...
Тип: Изобретение
Номер охранного документа: 0002605463
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ec0

Импульсная реактивная двигательная установка космического аппарата

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан...
Тип: Изобретение
Номер охранного документа: 0002605163
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ee2

Способ полуавтоматического управления причаливанием

Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности. По внешней команде автоматическую ориентацию...
Тип: Изобретение
Номер охранного документа: 0002605231
Дата охранного документа: 20.12.2016
Показаны записи 231-240 из 298.
13.01.2017
№217.015.7a2f

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в системе терморегулирования авиационной и ракетной техники. Осевой вентилятор содержит корпус в виде цилиндрический оболочки и размещенной в ней втулки с радиальными выступами, внутри которой установлен электродвигатель с наружной...
Тип: Изобретение
Номер охранного документа: 0002599549
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a98

Теплоизоляция агрегатов двигательной установки космического объекта и способ ее монтажа

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого...
Тип: Изобретение
Номер охранного документа: 0002600032
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7aff

Устройство для парашютной посадки груза на посадочную поверхность

Изобретение относится к области спуска объектов в атмосфере на парашюте. Устройство для мягкой парашютной посадки груза на посадочную поверхность содержит парашют, основной и дополнительный грузы, соединенные гибкой связью, упругое звено, соединяющее парашют и основной груз. Абсолютное...
Тип: Изобретение
Номер охранного документа: 0002600028
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7cf4

Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002600039
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f59

Теплоизоляция агрегатов двигательной установки космического объекта и способ ее монтажа

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого...
Тип: Изобретение
Номер охранного документа: 0002600022
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f5b

Водяная баллистическая установка космического назначения и способ подготовки её к работе

Группа изобретений относится к газодинамическим баллистическим установкам. Водяная баллистическая установка космического назначения включает газовую пушку, состоящую из секционированного ствола, соединенного герметизируемым мембранным узлом с отсеком высокого давления. Отсек высокого давления...
Тип: Изобретение
Номер охранного документа: 0002600013
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.85ee

Устройство и способ исследования воздействия факторов космического пространства на вещества и микроорганизмы

Группа изобретений относится к инструментам и технологиям исследования воздействия факторов космического пространства на вещества и микроорганизмы. Устройство состоит из корпуса (1), выполненного, например, из фторопласта. В полость (2) корпуса (одну или более) с резьбой (3) и конической...
Тип: Изобретение
Номер охранного документа: 0002603817
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86a4

Способ моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и имитационный состав для его реализации (варианты)

Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике. Описан способ моделирования процессов биокоррозионных поражений...
Тип: Изобретение
Номер охранного документа: 0002603797
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87c0

Способ поиска и обнаружения микроорганизмов в космическом пространстве

Изобретение относится к экспериментальным исследованиям в космическом пространстве. Способ включает взятие проб с помощью стерилизованного и гермоизолированного на Земле пробозаборника. Пробы берут с поверхности искусственного космического объекта, размещаемого в зонах эквидистантных точек...
Тип: Изобретение
Номер охранного документа: 0002603706
Дата охранного документа: 27.11.2016
+ добавить свой РИД