×
20.03.2015
216.013.3233

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ТОЛСТЫХ ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ С ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к производству толстых листов из низколегированной стали. Для повышения коррозионной стойкости в водородных и сероводородных средах, а также сопротивляемости к хрупкому разрушению при температуре до -10°C непрерывнолитую заготовку получают из стали со следующим соотношением элементов, мас.%: C=0,035-0,070, Si=0,10-0,25, Mn=1,05-1,40, Cr≤0,l, Ni=0,38-0,45, Cu=0,20-0,35, Mo=0,14-0,20, Al=0,02-0,05, (Ti+V+Nb)=0,07-0,11, Fe и примеси - остальное, при этом углеродный эквивалент составляет C≤0,42%, коэффициент трещиностойкости - P≤0,22%. Аустенитизацию непрерывнолитой заготовки производят до температуры 1180-1190°C в течение 8,5-12,0 ч. Черновую прокатку ведут с суммарной степенью деформации 40-45%, последующее промежуточное охлаждение раската проводят до температуры 730-740°C. Ускоренное охлаждение листа после чистовой прокатки завершают при температуре 530-560°C. Чистовую прокатку заканчивают при температуре на 40°C выше ее начала. 1 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии, преимущественно к производству толстых листов из низколегированной стали толщиной 25,0-40,0 мм для изготовления электросварных труб с повышенной коррозионной стойкостью для эксплуатации в условиях агрессивной морской среды.

Известен способ производства листов из низколегированной трубной стали класса прочности К60 толщиной 24-28 мм, включающий нагрев до температуры выше Ас3 слябовой заготовки из стали со следующим содержанием элементов: C=0,05-0,07%, Mn=1,45-1,55%, Si=0,20-0,35%, S≤0,003%, P≤0,013%, Ni=0,17-0,27%, Cr≤0,08%, Cu=0,10-0,20%, Al=0,025-0,045%, Nb=0,045-0,055%, V≤0,015%, Ti=0,015-0,025%, Fe - остальное, черновую прокатку в раскат промежуточной толщины, подстуживание, чистовую прокатку с регламентированными обжатиями и температурами конца прокатки, а также последующее ускоренное охлаждение листа, при этом температуру начала чистовой стадии прокатки принимают равной 830±20°C, а температуру конца чистовой прокатки устанавливают равной 820±15°C и последующее ускоренное охлаждение листа, при этом температуру начала ускоренного охлаждения листа принимают более 780°C, а конечную температуру ускоренного охлаждения листа устанавливают 625±15°C (Патент РФ №2479639, МПК C21D 8/02, C22C 38/38, C22C 38/42, B21B 1/26, 20.04.2013 г.).

Недостатком известного способа является сложность формирования требуемого уровня механических свойств материала листов толщиной более 28,0 мм, обусловленная получением неоднородной структуры по сечению, определяющей снижение эксплуатационной надежности конструкции трубопровода в целом.

Наиболее близким по своей технической сущности к предлагаемому изобретению является способ производства толстолистового проката из низколегированной стали, включающий выплавку стали, содержащей 0,04-0,08% C, 0,1-0,25% Si, 1,2-1,6% Mn, 0,3-0,5% Ni, 0,15-0,25% Mo, Cr≤0,12%, 0,15-0,45% Cu, Al≤0,05%, 0,03-0,06% V, 0,02-0,05% Nb, 0,01-0,03% Ti, остальное - железо и примеси при содержании каждого примесного элемента менее 0,03 и с параметром стойкости против растрескивания, составляющим Pcm<0,23%, разливку стали на непрерывнолитые заготовки, нагрев заготовки, черновую прокатку с переходом от продольной к поперечной прокатке с разбивкой ширины начинают при температуре не ниже 970°C и осуществляют ее с относительными обжатиями за проход не менее 10% до толщины, составляющей 3,5-5,2 толщины готового листа, последующее охлаждение промежуточной заготовки, чистовую прокатку начинают при температуре не ниже 740°C, причем первые проходы чистовой прокатки, на которых осуществляют разбивку ширины, производят с обжатием не более 10% и заканчивают чистовую прокатку проглаживающим проходом без обжатия при температуре не ниже 720°C, ускоренное охлаждение полученного листа до заданной температуры, определяемой в зависимости от его толщины из соотношения: Т=(717°C-0,11·h2)±15°C, где 0,11 - эмпирический коэффициент, °C/мм2; h - толщина готового листа, мм, и его последующее замедленное охлаждение (Патент РФ 2495142, МПК C21D 8/02, C21D 9/46, C22C 38/38, B21B 1/26, 10.10.2013 г.).

К недостаткам известного способа можно отнести то, что коррозионная стойкость материала листов, произведенных по данной технологии, в водородных и сероводородных средах не гарантируется.

Технический результат - получение проката толщиной 25,0-40,0 мм для объектов ответственного назначения с повышенными показателями по коррозионной стойкости в водородных и сероводородных средах, а также сопротивляемостью к хрупкому разрушению при температуре до -10°C для листов толщиной до 40,0 мм, определяемой количеством волокнистой составляющей в изломе образцов ИПГ.

Технический результат достигается тем, что в способе производства толстых листов из низколегированной стали, включающем аустенизацию непрерывнолитой заготовки, черновую прокатку с относительными обжатиями за проход не менее 10%, промежуточное охлаждение раската до регламентированной температуры, чистовую прокатку, ускоренное охлаждение листа до заданной температуры и последующее замедленное охлаждение в стопе, согласно изобретению непрерывнолитую заготовку получают из стали со следующим соотношением элементов C=0,035-0,070%, Si=0,10-0,25%, Mn=1,05-1,40%, Cr≤0,1%, Ni=0,38-0,45%, Cu=0,20-0,35%, Mo=0,14-0,20%, Al=0,02-0,05%, (Ti+V+Nb)=0,07-0,11%, Fe и примеси - остальное, при этом углеродный эквивалент Сэ≤0,42%, коэффициент трещиностойкости Pcm≤0,22%, аустенизацию непрерывнолитой заготовки производят до температуры 1180-1190°C в течение 8,5-12,0 ч, черновую прокатку ведут с суммарной степенью деформации 40-45%, последующее промежуточное охлаждение раската проводят до температуры 730-740°C, при этом ускоренное охлаждение листа после чистовой прокатки завершают при температуре 530-560°C.

Технический результат также достигается тем, что чистовую прокатку заканчивают при температуре на 40°C выше ее начала.

Сущность изобретения состоит в том, что заданный химический состав стали обеспечивает необходимый фазовый состав, определяющий технический результат при реализации предлагаемых технологических режимов.

Углерод в стали определяет ее прочностные свойства. Снижение содержания углерода менее 0,035% приводит к падению прочностных свойств ниже допустимого уровня, увеличение содержания более 0,070% приводит к увеличению прочности выше допустимого уровня, сопровождающемуся ухудшением пластических и вязкостных свойств.

При содержании кремния менее 0,10% повышается загрязненность стали оксидными включениями, увеличение содержания более 0,25% приводит к загрязненности силикатами - все это негативно отражается на механических и коррозионных свойствах стали.

Марганец, так же как и углерод, повышает прочностные характеристики стали. При увеличении содержания марганца более 1,40% наблюдается понижение ударной вязкости стали, ухудшение свариваемости и снижение стойкости против коррозии. Однако введение марганца в сталь является необходимым для раскисления стали и удаления серы, поэтому снижение содержания марганца менее 1,05% нежелательно.

Наличие хрома положительно сказывается на прочности и коррозионной стойкости металла, содержание хрома более 0,10% ухудшает пластические свойства стали, свариваемость.

Легирование никелем улучшает технологические и прочностные свойства стали. Содержание никеля менее 0,38% снижает устойчивость переохлажденного аустенита и приводит к увеличению критической скорости охлаждения, достижение которой в центральных слоях раската трудновыполнимо. Превышение никелем содержания 0,45% повысит устойчивость аустенита и увеличит долю продуктов его распада по сдвиговому механизму. Этот факт приведет к чрезмерному упрочнению материала и снижению пластических свойств.

Легирование медью повышает коррозионные и прочностные свойства стали. Влияние меди на дисперсионное твердение и адсорбцию водорода при содержании менее 0,2% пренебрежимо мало. Превышение медью содержания 0,35% в ходе кристаллизации приводит к ее сосредоточению в междендритных пространствах и границах кристаллов, повышая вероятность образования поверхностных дефектов сляба или раската.

Содержание молибдена в количестве 0,14-0,20% способствует обеспечению требуемых прочностных характеристик и коррозионной стойкости стали. Превышение максимального значения 0,20% не сопровождается дальнейшим повышением качества листов, лишь увеличивает нецелесообразные расходы на легирование. При концентрации молибдена менее 0,14% не обеспечиваются прочностные свойства стали.

Растворенный в металле кислород является вредной примесью, ухудшающей механические свойства стали, для его эффективного удаления из расплава используется алюминий. Стойкие нанодисперсные оксиды алюминия являются центрами кристаллизации для вновь образующихся зерен, измельчая структуру стали, улучшая ее механические характеристики. Этот механизм активизируется при содержании алюминия не менее 0,02%. Увеличение содержания алюминия более 0,05% экономически нецелесообразно.

Введение в состав стали ванадия, ниобия и титана в суммарном количестве не менее 0,08% вместе с использованием контролируемой прокатки с ускоренным охлаждением способствует получению ячеистой дислокационной микроструктуры, обеспечивающей сочетание высоких прочностных и пластических свойств. Ванадий и ниобий применяют для упрочнения стали дисперсными карбидами, измельчения зерна. Титан является одной из наиболее эффективных добавок в низколегированной стали, он способствует дисперсионному твердению и измельчению зерна. Также мелкодисперсные карбиды и карбонитриды ванадия, ниобия и титана препятствуют росту зерна аустенита в ходе нагрева, однако применение ванадия, ниобия и титана ограничено суммарной величиной 0,11%, превышение которой может сопровождаться снижением ударной вязкости стали.

Для предложенного химического состава при значениях углеродного эквивалента Сэ более 0,42% и коэффициента трещиностойкости Pcm более 0,22% возможно образование холодных трещин в сварных соединениях.

Углеродный эквивалент Сэ и параметр стойкости против растрескивания Pcm определяются по результатам плавочного анализа по формулам:

Сэ=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15,

Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B.

Режим аустенитизации определяет состояние стали перед прокаткой. Нагрев до температуры 1180-1190 в течение 8,5-12,0 ч должен обеспечить практически полное растворение карбонитридов ванадия и ниобия и не допустить интенсивного роста зерна аустенита. Суммарное обжатие на черновой стадии 40-45% выбрано таким, чтобы обеспечить высокую производительность стана и рациональные обжатия на последующих стадиях.

Рациональные параметры реализации способа были определены эмпирически. Экспериментально установлено, что нагрев сляба до температуры ниже 1180°C не сопровождается растворением дисперсных частиц ниобия. Увеличение температуры нагрева выше 1190°C сопровождается интенсивным ростом зерен аустенита и огрублением границ. При продолжительности нагрева менее 8,5 ч сохраняется высокий градиент температур по сечению сляба. Нагрев свыше 12,0 приводит к чрезмерному укрупнению аустенитного зерна с последующим образованием кристаллического излома.

Из опыта установлено, что при суммарной деформации на черновой стадии менее 40% существенно снижается проработка структуры по толщине раската. При суммарной деформации более 45% на чистовой стадии не достигается требуемого развития субструктуры и измельчения ферритного зерна.

Перед ускоренным охлаждением необходимо подготовить аустенит к последующему превращению, создав высокую плотность несовершенств кристаллической решетки гамма-железа. Температура начала деформации в чистовой стадии должна быть в интервале температур 730-740°C, а температура окончания - выше на 40°C. Температура конца ускоренного охлаждения выбрана, исходя из условий получения целевой микроструктуры.

Экспериментально определено, что начало чистовой прокатки ниже 730°C не позволяет подготовить аустенит к последующему превращению, создав высокую плотность несовершенств кристаллической решетки гамма-железа.

Экспериментально установлено, что при температуре конца прокатки выше температуры ее начала более чем на 40°C усиливается полосчатость, и значительно ухудшаются результаты испытаний падающим грузом.

Ускоренное охлаждение листов до температур, превышающих 560°C, обеспечивает низкую скорость охлаждения центральных слоев листа с выделением неблагоприятных структурных составляющих. Охлаждение до температуры ниже 530°C сопровождается чрезмерным развитием процесса промежуточного превращения переохлажденного аустенита с выделением соответствующих продуктов, резко ухудшающих вязкостные свойства материала.

Из приведенного анализа следует, что реализация предложенного технического решения позволяет получить требуемое качество листового проката для труб большого диаметра. Это достигается за счет выбора рациональных температурно-деформационных режимов для данного химического состава стали. Однако в случае выхода варьируемых технологических параметров за установленные для этого способа границы возникают трудности с получением стабильных и удовлетворительных свойств материала листов как механических, так и коррозионных. Таким образом, полученные данные подтверждают правильность рекомендаций по выбору допустимых значений технологических параметров предложенного способа производства толстых листов из низколегированной стали с повышенной коррозионной стойкостью.

Применение способа поясняется примером его реализации при производстве листов категории прочности DNV 450 SFDU на стане 5000.

Выплавка стали осуществлялась в кислородном конвертере вместимостью 370 т с проведением процесса десульфурации магнием в заливочном ковше. На выпуске проводилось первичное легирование, предварительное раскисление и обработка металла твердошлаковыми смесями с продувкой металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработка металла кальцием и перегрев металла для проведения вакуумирования проводилось на агрегате комплексной доводки стали. Дегазация металла осуществлялась путем его вакуумирования. Разливка производилась на МНЛЗ с защитой металла аргоном от вторичного окисления в слябы сечением 315×1715 мм.

Химический состав сталей приведен в таблице 1.

Сталь получена со следующим составом химических элементов, масс.%: C=0,049; Si=0,14; Mn=1,27; Cr=0,07; Ni=0,42; Cu=0,25; Mo=0,172; Al=0,038; Ti=0,017; V=0,043; Nb=0,033; железо и примеси - остальное. Углеродный эквивалент составил 0,36%, коэффициент трещиностойкости 0,16%.

Непрерывнолитые заготовки нагревали до температуры 1190 в течение 10,5 ч и прокатывали в черновой стадии до толщины подстуживания 180 мм, охлаждали на воздухе до температуры 733°C, прокатывали на чистовой стадии до конечной толщины 39,0 мм с окончанием процесса деформации при 773°C. В последующем листы ускоренно охлаждены до температуры 558°C. Предварительную деформацию на черновой стадии прокатки проводили с регламентированными обжатиями не менее 10%.

Испытания на статическое растяжение проводили на плоских двухдюймовых образцах по ASTM A370 в двух ортогональных направлениях. Динамические испытания вертикально падающим грузом проводили на образцах с шевронным надрезом при -10°C по API RP 5L3. Коррозионные испытания на водородную и сероводородную стойкость проводили в соответствии с требованиями NACE ТМ 0284 и EFC 16 (метод В) соответственно (коррозионная среда по NACE ТМ 0284, раствор В).

Варианты реализации предложенного способа и показатели их эффективности приведены в таблицах 2 и 3 соответственно.

Результаты испытаний показывают, что предлагаемый способ производства стали выбранного химического состава обеспечивает стабильный уровень стойкости в водородных и сероводородных средах.

Таким образом, применение описанного способа прокатки обеспечивает достижение требуемых результатов, а именно получение на толстолистовом реверсивном стане листов для труб большого диаметра с уровнем механических свойств, соответствующим категории прочности DNV 450 SFDU.

Технико-экономические преимущества рассматриваемого изобретения состоят в том, что использование предложенного способа обеспечивает производство толстых листов из низколегированной стали толщиной 25,0-40,0 мм для изготовления электросварных труб с повышенной коррозионной стойкостью для эксплуатации в условиях агрессивной морской среды.

Таблица 1
№ состава Содержание химических элементов, масс.% Углеродный эквивалент, Сэ, % Коэффициент трещиностойкости, Pcm, %
C Si Mn Cr Ni Cu Mo Al Ti+V+Nb Fe и примеси
1 0,035 0,10 1,05 - 0,38 0,20 0,14 0,020 0,070 остальное 0,28 0,13
2 0,049 0,14 1,27 0,07 0,42 0,25 0,17 0,038 0,093 -:- 0,36 0,14
3 0,060 0,20 1,34 0,09 0,43 0.25 0,19 0,038 0,095 -:- 0,39 0,18
4 0,070 0,25 1,35 0,10 0,45 0,35 0,20 0,050 0,110 -:- 0,42 0,20
5 (прототип) 0,040 0,20 1,20 0,10 0,30 0,25 0,20 0,030 0,110 -:- 0,34 0,14

Таблица 2
№ состава Толщина листа, мм Температура нагрева, °C Время нагрева, ч Суммарная деформация на черновой стадии, % Температура начала чистовой стадии, °C Температура конца чистовой стадии, °C Температура конца ускоренного охлаждения, °C
1 25,0 1180 8,5 40 730 770 530
2 39,0 1190 10,5 43 733 773 558
3 37,4 1190 10,5 43 733 773 558
4 40,0 1190 12,0 45 740 780 560
5 (прототип) 37,4 1210 7,5 40 790 770 563

Таблица 3
№ состава Предел текучести, МПа Предел прочности, МПа Отношение предела текучести к пределу прочности Относительное удлинение, % Доля вязкой составляющей в изломе, % Показатель длины трещины, % Показатель ширины трещины, % Коэффициент чувствительности к растрескиванию, %
1 560 630 0,89 52 90/90 1,06 0,76 0,07
2 550 625 0,88 51 90/90 0,33 0,03 0
3 545 625 0,87 54 90/95 0 0 0
4 545 620 0,88 56 95/95 0 0 0
5 (прототип) 555 630 0.88 53 85/90 5,95 2,33 0,18
Испытания сульфидному коррозионному растрескиванию под напряжением (СКРН) составов 1-4: трещины на поверхности образцов не обнаружены (продолжительность испытаний 720 ч при напряжении 90% от предела текучести). Испытания СКРН состава 5 (прототип): образец разрушился за 504 ч при напряжении 90% от предела текучести.

Источник поступления информации: Роспатент

Показаны записи 111-120 из 154.
09.02.2019
№219.016.b86d

Способ производства низкоуглеродистой стали с повышенной коррозионной стойкостью

Изобретение относится к области черной металлургии и может быть использовано для получения низкоуглеродистых сталей с повышенной коррозионной стойкостью для производства полосового проката. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск жидкого металла в...
Тип: Изобретение
Номер охранного документа: 0002679375
Дата охранного документа: 07.02.2019
03.03.2019
№219.016.d29f

Способ производства коррозионностойкого проката из низколегированной стали

Изобретение относится к области металлургии, в частности к производству термически обработанного листового проката из штрипсовых сталей, предназначенных для изготовления электросварных нефтегазопроводных и нефтепромысловых труб, используемых в условиях пониженных температур для...
Тип: Изобретение
Номер охранного документа: 0002681074
Дата охранного документа: 01.03.2019
16.03.2019
№219.016.e202

Способ производства особонизкоуглеродистой стали

Изобретение относится к области черной металлургии, в частности к производству особонизкоуглеродистых сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. В способе используют жидкий чугун с массовой долей серы не более 0,005%, во время выпуска стали в сталь-ковш...
Тип: Изобретение
Номер охранного документа: 0002681961
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ed28

Газогорелочное устройство

Изобретение относится к энергетике, может быть использовано в черной и цветной металлургии при подготовке руд и концентратов методом агломерации и обжига, а именно в горнах агломерационных и обжиговых машин конвейерного типа. Газогорелочное устройство содержит прямоугольный корпус, снабженный...
Тип: Изобретение
Номер охранного документа: 0002682934
Дата охранного документа: 22.03.2019
02.05.2019
№219.017.484f

Конструкционная криогенная сталь и способ ее получения

Изобретение относится к области металлургии, а именно к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа. Сталь содержит, мас.%: углерод 0,03-0,10, кремний 0,10-0,45, марганец...
Тип: Изобретение
Номер охранного документа: 0002686758
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.4886

Способ установки теплоизолирующей вставки в дутьевой канал воздушной фурмы доменной печи

Изобретение относится к области металлургии и может быть использовано при установке теплоизолирующей керамической вставки в дутьевой канал воздушной фурмы доменной печи. В способе осуществляют нанесение компенсационного теплоизоляционного материала, обладающего клеящими и гидроизоляционными...
Тип: Изобретение
Номер охранного документа: 0002686750
Дата охранного документа: 30.04.2019
14.05.2019
№219.017.519b

Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,04-0,12, кремний не более 0,03, марганец...
Тип: Изобретение
Номер охранного документа: 0002687360
Дата охранного документа: 13.05.2019
29.05.2019
№219.017.6244

Способ производства горячекатаного проката повышенной прочности

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления насосно-компрессорных труб. Для повышения прочностных свойств и коррозионной стойкости проката осуществляют выплавку стали, содержащей,...
Тип: Изобретение
Номер охранного документа: 0002689348
Дата охранного документа: 27.05.2019
30.05.2019
№219.017.6b97

Способ производства тонких холоднокатаных полос для нанесения полимерного покрытия

Изобретение относится к области черной металлургии, в частности к производству холоднокатаных полос толщиной 0,35-0,70 мм для последующего нанесения полимерного покрытия. Для увеличения выхода годного проката с полимерным покрытием за счет снижения отсортировки по дефектам поверхности...
Тип: Изобретение
Номер охранного документа: 0002689491
Дата охранного документа: 28.05.2019
20.06.2019
№219.017.8cff

Способ производства толстолистового высокопрочного износостойкого проката (варианты)

Изобретение относится к области металлургии, конкретно к производству проката толщиной до 50 мм. Для повышения прочностных свойств, ударной вязкости и твердости при сохранении достаточной пластичности предложено пять вариантов осуществления способа, при этом каждый из вариантов способа включает...
Тип: Изобретение
Номер охранного документа: 0002691809
Дата охранного документа: 18.06.2019
Показаны записи 111-120 из 126.
01.03.2019
№219.016.d00c

Способ производства горячекатаного проката

Изобретение предназначено для получения качественной поверхности полосы при производстве горячекатаных полос из стали с содержанием алюминия до 0,05%, в том числе травленых. Способ включает горячую прокатку на широкополосном стане, охлаждение водой до температуры смотки и смотку полос в рулоны....
Тип: Изобретение
Номер охранного документа: 0002445177
Дата охранного документа: 20.03.2012
01.03.2019
№219.016.d013

Способ производства толстолистового низколегированного штрипса

Изобретение относится к области металлургии, конкретнее к производству листового проката, и может быть использовано при изготовлении толстых листов и штрипсов из низколегированных сталей с применением контролируемой прокатки. Для получения механических свойств штрипса толщиной 20-40 мм,...
Тип: Изобретение
Номер охранного документа: 0002445379
Дата охранного документа: 20.03.2012
01.03.2019
№219.016.d079

Способ производства толстолистового низколегированного штрипса

Изобретение относится к металлургии, конкретнее к прокатному производству. Для повышения предела прочности и текучести при сохранении пластических характеристик на уровне, позволяющем производить формовку труб из штрипса, изготавливают непрерывнолитую заготовку из стали, содержащей, мас.%: С...
Тип: Изобретение
Номер охранного документа: 0002463360
Дата охранного документа: 10.10.2012
01.03.2019
№219.016.d07d

Сталь и изделие, выполненное из нее

Группа изобретений относится к области металлургии, а именно к низкоуглеродистой стали, предназначенной для изготовления деталей автомобиля методом штамповки. Изделие выполнено из стали, содержащей компоненты в следующем соотношении: углерод 0,016-0,12%, кремний 0,001-0,50%, марганец...
Тип: Изобретение
Номер охранного документа: 0002463374
Дата охранного документа: 10.10.2012
01.03.2019
№219.016.d082

Способ производства толстолистового низколегированного штрипса

Изобретение относится к области металлургии и может быть использовано при изготовлении толстых листов и штрипсов с применением контролируемой прокатки. Для повышения прочностных и пластических характеристик штрипса непрерывнолитую заготовку, полученную из стали, содержащей, мас.%: С=0,03-0,10;...
Тип: Изобретение
Номер охранного документа: 0002463359
Дата охранного документа: 10.10.2012
01.03.2019
№219.016.d0a4

Способ производства толстолистового низколегированного проката

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано при изготовлении толстых листов и штрипсов. Для повышения прочностных свойств штрипса толщиной 23-40 мм до уровня К60 при сохранении...
Тип: Изобретение
Номер охранного документа: 0002466193
Дата охранного документа: 10.11.2012
19.04.2019
№219.017.32dd

Способ правки толстолистового проката

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано для обеспечения плоскостности толстых листов из высокопрочных низколегированных штрипсовых сталей, полученных с применением контролируемой...
Тип: Изобретение
Номер охранного документа: 0002432221
Дата охранного документа: 27.10.2011
14.05.2019
№219.017.519b

Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,04-0,12, кремний не более 0,03, марганец...
Тип: Изобретение
Номер охранного документа: 0002687360
Дата охранного документа: 13.05.2019
30.05.2019
№219.017.6b97

Способ производства тонких холоднокатаных полос для нанесения полимерного покрытия

Изобретение относится к области черной металлургии, в частности к производству холоднокатаных полос толщиной 0,35-0,70 мм для последующего нанесения полимерного покрытия. Для увеличения выхода годного проката с полимерным покрытием за счет снижения отсортировки по дефектам поверхности...
Тип: Изобретение
Номер охранного документа: 0002689491
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.725d

Листовой прокат и способ его получения

Изобретение относится к области металлургии, а именно к конструкционной низколегированной стали, используемой для производства листового проката для сварных конструкций, в частности листового проката толщиной до 40 мм для магистральных газопроводных труб с высокой деформационной способностью, а...
Тип: Изобретение
Номер охранного документа: 0002690076
Дата охранного документа: 30.05.2019
+ добавить свой РИД