×
10.03.2015
216.013.31c1

Результат интеллектуальной деятельности: ЗАЩИТНОЕ ТЕХНОЛОГИЧЕСКОЕ ПОКРЫТИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные технологические покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в других отраслях народного хозяйства. Защитное технологическое покрытие содержит, мас.%: 2,5-27 AlO; 1-15 СаО; 6-8 MgO; 1,5-2,5 BO; 1-2,5 ВаО; 5-7,52 BaO·3SiO; 3-5 2MgO·2AlO·SiO; 0,5-2 В; 20-30 MoSi; SiO - остальное. Технический результат - понижение значений окисляемости, коэффициента трения и требуемого удельного давления на заготовку в процессе горячей обработки давлением, а также повышение смачивающей способности поверхности заготовки при высоких температурах нагрева до 1450°C. 2 табл.
Основные результаты: Защитное технологическое покрытие, содержащее AlO, CaO, MgO, BO, BaO, 2BaO·3SiO, SiO, отличающееся тем, что оно дополнительно содержит 2MgO·2AlO·SiO, B и MoSi при следующем соотношении компонентов, мас.%:

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные технологические покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в других отраслях народного хозяйства.

Известно защитное технологическое покрытие следующего химического состава, мас.%:

SiO2 40-75
Al2O3 6-18
СаО 4-11
MgO 1-4
B2O3 5-15
Na2O 0,5-1
K2O 0,3-3
ВаО 5-10
Al2O3·3SiO2 2-7

(RU 2151110, 18.01.1999).

Известно защитное технологическое покрытие следующего химического состава, мас.%:

SiO2 10-30
Al2O3 3-20
СаО 8-12
MgO 0,5-5
B2O3 3-12
Na2O 0,1-0,4
K2O 0,1-0,2
ВаО 3-11
SiB4 0,5-5
MoSi2 32-70

(RU 2190584, 28.11.2000).

Известно защитное технологическое покрытие для сталей и сплавов следующего химического состава, мас.%:

SiO2 22-55
MgO 6,5-20
Na2O 0,5-6,5
СаО 1-6
B2O3 14-45
3СаО·Al2O3 1,5-8
MgO·ZrO2 0,5-2,5
Al2O3·MgO 1-1,5
Al2O3 остальное

(RU 2312827, 20.12.2007).

Известно защитное технологическое покрытие для сталей и сплавов следующего химического состава, мас.%:

Al2O3 17-33
СаО 0,5-7,8
MgO 0,5-5
2CaO·SiO2 0,5-1
3СаО·Al2O3 0,5-1
2MgO·Al2O3·5SiO2 5-10
СаО·6Al2O3 5-10
SiO2 остальное

(RU 2345963, 10.02.2009).

Известно также защитное технологическое покрытие следующего химического состава, мас.%:

SiO2 12-20
MgO 1,5-5
3СаО·Al2O3 10-15
Al2O3·MgO 3-10
BaO·2SiO2 1,5-5
ZnO2·Al2O3 3-8
Al2O3 остальное

(RU 2379239, 20.01.2010).

Наиболее близким аналогом, взятым за прототип, является защитное технологическое покрытие следующего химического состава, мас.%:

Al2O3 3-21
СаО 1,5-13
MgO 0,5-5,5
B2O3 3-18
ВаО 3-13
K2O 0,1-5
2BaO3·SiO2 1-3
2Al2OB2O3 1-3
SiO2 остальное

(RU 2379238, 20.01.2010).

Недостатками известных защитных технологических покрытий являются повышенное значение коэффициента трения и требуемого удельного давления на заготовку в процессе горячей обработки давлением, а также высокая окисляемость и низкая смачивающая способность при высокотемпературных нагревах до 1450°C.

Техническим результатом является понижение значений окисляемости, коэффициента трения и требуемого удельного давления на заготовку в процессе горячей обработки давлением, а также повышение смачивающей способности поверхности заготовки при высоких температурах нагрева до 1450°С.

Поставленный технический результат достигается за счет того, что предложено защитное технологическое покрытие, содержащее, мас.%: Al2O3, СаО, MgO, B2O3, ВаО, 2BaO·3SiO2, SiO2, при этом оно дополнительно содержит 2MgO·2Al2O3·SiO2, Bаморфный и MoSi2 при следующем соотношении компонентов, мас.%:

Al2O3 2,5-27
СаО 1-15
MgO 6-8
B2O3 1,5-2,5
ВаО 1-2,5
2BaO·3SiO2 5-7,5
2MgO·2Al2O3·SiO2 3-5
Ваморфный 0,5-2
MoSi2 20-30
SiO2 остальное

Предложенное защитное технологическое покрытие приводит к снижению окисляемости, требуемого удельного давления на заготовку в процессе горячей обработки давлением, коэффициента трения и повышению смачивающей способности поверхности образцов сплавов интерметаллидной системы Ti-Al-Nb, никелевого жаропрочного сплава ВЖ172 и высокопрочного титанового сплава ВТ23 при высоких температурах нагрева заготовок и деталей до 1450°C.

Введение 2MgO2·Al2O3·SiO2, Ваморфный и MoSi2 в предлагаемое защитное технологическое покрытие при заявленном содержании компонентов снижает окисляемость и краевой угол смачивания, а также снижает удельное давление и коэффициент трения.

Рентгеноструктурный анализ предлагаемого защитного технологического покрытия показал, что в процессе технологических нагревов в покрытии образуются температуроустойчивые фазы 2MgO2·Al2O3·5SiO2, 3Al2O3·2SiO2, 2CaO·Al2O3·SiO2 и 3ВаО·Al2O3, обеспечивающие снижение окисляемости и повышение смачивающей способности, а также снижение удельного давления и коэффициента трения при температурах нагрева до 1450°C.

Примеры осуществления.

Технология изготовления шликера для защитного технологического покрытия проводилась следующим образом. Для получения фритты защитного технологического покрытия следующие компоненты: Al2O3, CaO, MgO, В2О3, BaO, 2BaO·3SiO2, 2MgO·Al2O3·SiO2, Ваморфный, MoSi2, SiO2, в пропорциях, указанных в таблице 1, помещали в фарфоровый барабан с алундовыми шарами в соотношении 1: 1,5, где проводили размол и перемешивали компоненты в течение 3 ч на валковой мельнице. Варку фритты проводили в алундовых тиглях в камерной печи. Далее приготавливали шликер покрытия путем размола фритты и перемешивания компонентов с добавлением 250 мл водопроводной воды в фарфоровых барабанах валковой мельницы в течение 36 ч. Готовый шликер покрытия выгружали в полиэтиленовую емкость, где проходило старение шликера в течение 5 суток.

Шликер с вязкостью 21 Па·с, определенной вискозиметром ВЗ 246, наносили краскораспылителем КРУ4 на образцы сплавов интерметаллида системы Ti-Al-Nb, жаропрочного сплава ВЖ172 и высокопрочного сплава ВТ 23. Толщина предлагаемого защитного покрытия составляла 0,25 мм. Образцы с защитным технологическим покрытием подвергали сушке при 20°C в течение 24 ч, затем проводили нагрев при 1150 и 1450°C с выдержкой 10 ч. Данные режимы нагревов соответствуют режимам изотермической штамповки и термообработки заготовок из сплавов интерметаллида системы Ti-Al-Nb, жаропрочного сплава ВЖ172 и высокопрочного сплава ВТ23.

Свойства предлагаемого покрытия и его прототипа приведены в таблице 2.

Образцы сплава интерметаллида системы Ti-Al-Nb, жаропрочного сплава ВЖ172 и высокопрочного титанового сплава ВТ23 с предлагаемым защитным технологическим покрытием и покрытием-прототипом подвергались испытаниям для определения окисляемости, краевого угла смачивания, удельного давления и коэффициента трения при температурах 1150 и 1450°C.

Окисляемость образцов с предлагаемым защитным технологическим покрытием и покрытием-прототипом определялась путем непрерывного их взвешивания через 3 ч, 5 ч, 10 ч, без извлечения образцов из высокотемпературной камерной печи ТК1600 при заданных температурах нагрева 1150 и 1450°C.

Смачивающая способность покрытия оказывает существенное влияние на качество защитного действия данного покрытия. Смачивающая способность предлагаемого защитного покрытия определялась по значениям краевого угла смачивания поверхности образцов сплава интерметаллида системы Ti-Al-Nb, жаропрочного сплава ВЖ172 и высокопрочного сплава ВТ23 при заданных температурах нагрева 1150 и 1450°C. Для определения краевого угла смачивания из сухого шликера предлагаемого покрытия и покрытия-прототипа прессовали штабики диаметром 4 мм и высотой 2 мм. Изготовленные штабики устанавливали на пластины сплава интерметаллида системы Ti-Al-Nb, жаропрочного сплава ВЖ172 и высокопрочного сплава ВТ23, загружали в печь и нагревали на заданные температуры 1150 и 1450°C в течение 0,5 ч. После выгрузки образцы охлаждали на воздухе до комнатной температуры и исходя из размеров площади растекшегося штабика определялся краевой угол смачивания по формуле:

, где - краевой угол смачивания, град,

d - диаметр растекания капли покрытия, мм.

Сниженное удельное давление, прикладываемое на заготовку при деформации и обусловленное использованием защитных технологических покрытий, позволяет получать точные штамповки с минимальными припусками, которые в дальнейшем удаляются механической обработкой, что соответственно повышает коэффициент использования металла. Снижение требуемого удельного давления на поверхность заготовки объясняется тем, что защитное технологическое покрытие играет роль высокотемпературной смазки и при давлении равномерно распределяется по всей поверхности заготовки. Таким образом, для получения заготовки заданной формы при горячей штамповке при использовании предложенного покрытия необходимо прикладывать меньшее удельное давление к заготовке.

Удельное давление замерялось манометром при деформации образцов с предлагаемым защитным технологическим покрытием и покрытием-прототипом при заданных температурах нагрева 1150 и 1500°C.

Коэффициент трения, характеризующий эффективность действия покрытий в качестве высокотемпературных смазок при горячей обработке давлением, определялся при горячей осадке образцов диаметром 5 мм и высотой 20 мм на гидравлическом прессе мощностью 2,5 т со скоростью 80 мм/с по формуле:

µ=tgα, где µ - коэффициент трения, α - двойной угол трения.

Результаты сравнительных испытаний приведены в таблице 2. Нижеприведенные экспериментальные данные соответствуют средним значениям, полученным из 3-х измерений окисляемости, краевого угла смачивания, удельного давления и коэффициента трения.

Окисляемость:

- образцов сплавов интерметаллида системы Ti-Al-Nb с предлагаемым покрытием при высокотемпературных нагревах при температуре 1150°C (с выдержкой 10 ч) меньше в 12,7 раз, а при температуре 1450°C (с выдержкой 10 ч) меньше в 3,2 раз по сравнению с защитным технологическим покрытием-прототипом;

- образцов жаропрочного сплава ВЖ172, с предлагаемым покрытием при высокотемпературных нагревах при температуре 1150°C (с выдержкой 10 ч) меньше в 11 раз, а при температуре 1450°C (с выдержкой 10 ч) меньше в 7 раз по сравнению с покрытием-прототипом;

- образцов высокопрочного сплава ВТ23, с предлагаемым покрытием при высокотемпературных нагревах при температуре 1150°C (с выдержкой 10 ч) меньше в 12 раз, а при температуре 1450°C (с выдержкой 10 ч) меньше в 12,5 раз по сравнению с покрытием-прототипом.

Краевой угол смачивания защитного технологического покрытия:

- образцов сплавов интерметаллида Ti-Al-Nb при технологических нагревах при температуре 1150°C меньше в 2,2 раза, а при температуре 1450°C меньше в 2,6 раз по сравнению с защитным технологическим покрытием-прототипом;

- образцов жаропрочного сплава ВЖ172 при технологических нагревах при температуре 1150°C меньше в 2,6 раз, а при температуре 1450°C меньше в 3 раза по сравнению покрытием-прототипом;

- образцов высокопрочного сплава ВТ23, при технологических нагревах при температуре 1150°C меньше в 3 раза, а при температуре 1450°C меньше в 3,5 раза по сравнению с покрытием-прототипом.

Удельное давление при деформации образцов:

- сплавов интерметаллида Ti-Al-Nb с предлагаемым защитным технологическим покрытием при температуре 1150°C (с выдержкой 10 ч) меньше в 2,5 раза, а при температуре 1450°C (с выдержкой 10 ч) меньше в 3,75 раз по сравнению с покрытием-прототипом;

- жаропрочного сплава ВЖ172, с предлагаемым защитным покрытием при температуре 1150°C (с выдержкой 10 ч) меньше в 3,6 раз, а при температуре 1450°C (с выдержкой 10 ч) меньше в 5,8 раз по сравнению с покрытием-прототипом;

- высокопрочного сплава ВТ23, с предлагаемым защитным покрытием при температуре 1150°C (с выдержкой 10 ч) меньше в 3,3 раза, а при температуре 1450°C (с выдержкой 10 ч) меньше в 4,3 раз по сравнению с покрытием-прототипом.

Коэффициент трения с предлагаемым защитным технологическим покрытием:

- образцов сплавов интерметаллида Ti-Al-Nb при технологических нагревах при температуре 1150°C меньше в 4 раза, а при температуре 1450°C меньше в 8 раз по сравнению с покрытием-прототипом;

- образцов жаропрочного сплава ВЖ172, при технологических нагревах при температуре 1150°C меньше в 4 раза, а при температуре 1450°C меньше в 8 раз по сравнению с покрытием-прототипом;

- образцов высокопрочного сплава ВТ23, при технологических нагревах при температуре 1150°C меньше в 4 раза, а при температуре 1450°C меньше в 8 раз по сравнению с покрытием-прототипом.

В процессе термомеханической обработки сплавов интерметаллида Ti-Al-Nb, жаропрочного сплава ВЖ172 и высокопрочного сплава ВТ23 происходит равномерное растекание защитного технологического покрытия по всей поверхности заготовки, что говорит о его работе в качестве высокотемпературной смазки.

Применение предлагаемого защитного технологического покрытия позволит получить точные штамповки, экономию металла 8-11%, снизить трудоемкость механической обработки заготовок на 20-30%, реализовать процесс изотермического деформирования заготовок на воздухе, так как покрытие выполняет роль разделительной пленки между штамповым инструментом и деформируемой заготовкой, обеспечивая легкое удаление деформируемой заготовки из штампа, так как без покрытия происходит процесс диффузионной сварки между инструментом и заготовкой.

Защитное технологическое покрытие, содержащее AlO, CaO, MgO, BO, BaO, 2BaO·3SiO, SiO, отличающееся тем, что оно дополнительно содержит 2MgO·2AlO·SiO, B и MoSi при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 281-290 из 369.
29.03.2019
№219.016.f659

Способ получения жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к получению жаропрочных никелевых сплавов, и может быть использовано для изготовления сварных корпусов, кожухов высоконагруженных деталей авиационных газотурбинных двигателей. Способ включает расплавление в вакууме шихтовых материалов,...
Тип: Изобретение
Номер охранного документа: 0002404273
Дата охранного документа: 20.11.2010
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d22

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Предложен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение...
Тип: Изобретение
Номер охранного документа: 0002256722
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d30

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения отливок из жаропрочных сплавов, в частности турбинных лопаток газотурбинных двигателей и установок. Устройство содержит зону нагрева с нагревателем и зону охлаждения, разделенные теплоизолирующим экраном. В зоне нагрева расположен нагреватель с...
Тип: Изобретение
Номер охранного документа: 0002258578
Дата охранного документа: 20.08.2005
Показаны записи 281-290 из 343.
19.04.2019
№219.017.2ebc

Способ изготовления штамповок дисков из слитков высокоградиентной кристаллизации из никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, полученных методом высокоградиентной кристаллизации, работающих при температурах выше 600°С, в частности дисков ГТД. Предлагаемый способ включает вакуумно-индукционную выплавку,...
Тип: Изобретение
Номер охранного документа: 0002389822
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3218

Способ термомеханической обработки изделий из титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать...
Тип: Изобретение
Номер охранного документа: 0002457273
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
+ добавить свой РИД