×
10.03.2015
216.013.2f9a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕЧЕННОГО ТЕХНЕЦИЕМ-99m НАНОКОЛЛОИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в нее элюата технеция-99m, затем введение 0,20-0,25 мг аскорбиновой кислоты, 2,5-4,0 мг желатина и 0,02-0,03 мг олова (II) хлорида дигидрата из расчета на 1 мл смеси. Затем проводят нагревание полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и стерилизующую фильтрацию. В качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом. Изобретение обеспечивает получение меченного технецием-99m наноколлоида, у которого не менее 80% частиц имеют размер в интервале 20-100 нм, относительное содержание частиц с размерами менее 20 нм не превышает 6% и радиохимическая чистота составляет более 90% и сохраняется не менее 4 часов. 1 ил., 4 пр.
Основные результаты: Способ получения меченного технецием-99m наноколлоида, включающий приготовление исходной суспензии наноколлоида, введение в нее элюата технеция-99m, затем введение аскорбиновой кислоты и желатина в количествах на 1 мл смеси: 0,20-0,25 мг и 2,5-4,0 мг соответственно, и определенного количества олова (II) хлорида дигидрата, последующий нагрев полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и проведение стерилизующей фильтрации, отличающийся тем, что в качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом, исходную суспензию готовят в 0,1% растворе додецилбензол сульфата натрия и пропускают ее через фильтр с диаметром пор 100 нм, а олова (II) хлорид дигидрат берут в количестве 0,02-0,03 мг из расчета на 1 мл смеси.

Изобретение относится к медицине, в частности к способу получения радиоактивных препаратов медицинского назначения, которые могут быть использованы для радионуклидной диагностики, в том числе для проведения лимфосцинтиграфии в онкологии.

В существующей мировой практике наноколлоидные препараты, меченные короткоживущим радионуклидом технецием-99m (99mТс), достаточно широко используются для проведения диагностических исследований в онкологии, кардиологии, для обнаружения нарушений анатомо-морфологической структуры при опухолях, циррозах, гепатитах и других заболеваний. К числу таких препаратов, серийно выпускаемых в России, относится 99mТс-Технефит (ООО «Диамед»), представляющий собой коллоидный раствор на основе фитина (солей инозитгексафосфорной кислоты). Кроме того, разработан способ получения наноколлоида для приготовления радиофармпрепаратов на основе сульфида рения [Патент RU №2315624 С2, 27.01.2008].

В Европе производятся препараты «Nanocoll» (GE Amersham) с размерами частиц<80 нм; «99mTc-nanocolloid» (GE,Uppsala,Sweden) с теми же размерами частиц; «Nanocis» (CIS bio International) - размеры ~100 нм и др. [см. Чернов В.И., Афанасьев С.Г., Синилкин А.А. и др. Радионуклидные методы исследования в выявлении «сторожевых» лимфатических узлов//Сибирский онкологический журнал. - 2008. T.28. - №4. - C.5-10].

Все приведенные наноколлоидные препараты изготавливаются на основе соединений, образующих устойчивые гидрозоли. При этом решающим фактором успеха является не их химический состав, а размер наночастиц. Известно, например, что оптимальный размер частиц для проведения лимфосцинтиграфии составляет 20-100 нм. Такие частицы выводятся из тканей со скоростью, не позволяющей им проникать в кровяное русло. Частицы с размерами менее 20 нм легко проходят в кровяное русло, что препятствует визуализации лимфоузлов [Sampson C.B. Textbook of Radiopharmacy Theory and Practice. Vol.3, 2nd ed. London, United Kingdom: Gordon and Breach; 1994: 196]. В отличие от них наночастицы с размерами более 200 нм могут быть использованы для мечения аутолейкоцитов с целью выявления очагов воспалений в кардиологии. Например, в Австралии для маркировки белых клеток крови при диагностике инфекций и воспалений более 20 лет используется меченный технецием-99m наноколлоид на основе фторида олова [C. Tsopelas. The radiopharmaceutical chemistry of 99mTc-tin fluoride colloid-labeled-leukocytes//The quarterly journal of nuclear medicine and molecular imaging. - 2005. Vol.49, Р. 319-324].

Большая часть из известных наноколлоидных радиофармпрепаратов представляет собой простые неорганические комплексы 99mТс с сульфидами рения и сурьмы, получаемые по достаточно сложным технологиям. Например, известен способ получения наноколлоида сульфида сурьмы [Lin Y., Zhang X., Li J. et al. Appl. Radiat. Isot., 58 (2003), 347-352], включающий три основные стадии с большим количеством (более 10) промежуточных операций. Примерно столько же стадий включает способ получения 99mTc-сульфид рениевого наноколлоида [Tsopelas C.J. Nucl.Med., 42 (2001), 3, 460-466].

Более простой способ получения меченных технецием-99m наноколлоидов - путем проведения адсорбции восстановленного 99mTc на гамма-оксиде алюминия - был предложен авторами заявки [Патент RU №2463075 С1, 10.10.2012]. Способ включает приготовление водной суспензии из наноразмерного порошка гамма-оксида алюминия, введение элюата технеция-99m, затем в определенных количествах последовательно вводят аскорбиновую кислоту, олова (II) хлорид дигидрат и желатин. Полученную смесь нагревают на водяной бане при температуре 70-80°С в течение 30 мин, охлаждают до комнатной температуры в ультразвуковой ванне и проводят стерилизующую фильтрацию. Этот способ, как наиболее близкий к заявляемому, взят за прототип.

Проведенные нами предварительные исследования показали, что устойчивые коллоидные соединения с заданными размерами могут быть также получены на основе железо-углеродных частиц (Fe@C) с химически модифицированной поверхностью органическими радикалами - арендиазоний тозилатами (АДТ) [Патент RU №2405655 B2, 10.02.2010]. В результате предварительных токсикологических исследований было также установлено, что величина летальной дозы LD50 для таких частиц составляет>310 мг/кг веса, что согласно ГОСТ12.1.007 - 76 позволяет их отнести к группе 4 (малотоксичные вещества).

Еще одним важным фактором, повлиявшим на выбор Fe@C (АДТ) в качестве объекта для мечения технецием-99m, является то, что они, обладая магнитными свойствами, одновременно могут быть использованы в качестве рентгеноконтрастных агентов для проведения магнито-резонансной томографии. Все это открывает широкие возможности для их применения в двух параллельных видах диагностики с последующим получением информации не только о топографии очага воспаления, но и его функциональном состоянии.

Способов получения меченного 99mTc наноколлоида Fe@C (АДТ) нами в литературе не обнаружено, что и определило задачу разработки метода получения наноразмерного соединения 99mTc-Fe@C (АДТ), приемлемого по своим характеристикам для проведения лимфосцинтиграфии и других диагностических исследований.

Технический результат от предлагаемого изобретения состоит в получении меченного технецием-99m наноколлоида, отвечающего следующим требованиям:

- не менее 80% частиц имеют размер в интервале 20-100 нм;

- относительное содержание частиц с размерами менее 20 нм не превышает 6%;

- радиохимическая чистота радиофармпрепарата составляет более 90% и сохраняется не менее 4 часов.

В соответствии с этим, поставленная задача получения наноколлоида 99mTc-Fe@C (АДТ) с заданными размерами решается следующим образом. В способе получения меченного технецием-99m наноколлоида, включающем как и прототип, приготовление исходной суспензии наноколлоида, введение в него элюата технеция-99m, затем введение аскорбиновой кислоты и желатина в количествах на 1 мл смеси: 0,20-0,25 мг и 2,5-4,0 мг, соответственно, и определенного количества олова (II) хлорида дигидрата, последующий нагрев полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и проведение стерилизующей фильтрации, в отличие от прототипа, в качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом, исходную суспензию готовят в 0,1% растворе додецилбензол сульфата натрия и пропускают ее через фильтр с диаметром пор 100 нм, а олова (II) хлорид дигидрат берут в количестве 0,02-0,03 мг из расчета на 1 мл смеси.

Изобретение поясняется фиг. 1, на которой представлено лимфосцинтиграмма крысы через 1 час после введения под кожу животного наноколлоидного радиофармпрепарата 99mTc-Fe@C (АДТ). Накопление в лимфатическом узле 3,5% от общей введенной активности: 1 - лимфоузел, 2 - место введения препарата.

Сущность изобретения поясняется следующими примерами.

Пример 1. Во флакон вместимостью 20 мл вносят навеску Fe@C (АДТ) массой ~10 мг, разводят ее в 20 мл 0,1% раствора додецилбензол сульфата натрия и обрабатывают в ультразвуковой ванне в течение 30 мин. 2 мл полученной суспензии переносят в отдельный флакон, пропуская ее через фильтр с диаметром пор 220 нм. Затем к ней последовательно добавляют 2 мл элюата 99mTc с активностью 1,5-2 ГБк, 100 мкл водного раствора аскорбиновой кислоты с концентрацией 10 мг/мл, 10 мкл свежеприготовленного раствора Sn (II) (концентрация 8 мг/мл по SnCl2·2Н2О) и 100 мкл водного раствора желатина с концентрацией 100 мг/мл. После интенсивного перемешивания смесь кипятят в течение 30 мин с последующим охлаждением до комнатной температуры в ультразвуковой ванне и фильтруют через стерилизующий фильтр (0, 22 мкм) в асептических условиях в стерильный флакон.

Радиохимический выход продукта с размером частиц менее 100 нм относительно общей активности приготовленного препарата определяли путем фильтрации исходной смеси через фильтр с диаметром пор 100 нм. Содержание фракции с размерами менее 20 нм контролировали по данным накопления 99mTc в крови через 1 час после введения препарата экспериментальным животным. В рассмотренном примере введенные количества аскорбиновой кислоты, Sn (II) и желатина в пересчете на 1 мл приготовленной смеси составляют 0,25 мг, 0,02 мг и 2,5 мг соответственно. Выход продукта с размерами менее 100 нм составил 70%, а фракции менее 20 нм - 10%. Радиохимическая чистота фильтрата равна 90% и остается на этом уровне в течение 4-6 часов.

Пример 2. Реакционную смесь готовят так же, как и в примере 1, с тем отличием, что 2 мл приготовленной суспензии Fe@C (АДТ) переносят в отдельный флакон, пропуская ее через фильтр с диаметром пор 100 нм. За тем туда вводят те же количества элюата 99mTc, аскорбиновой кислоты, свежеприготовленного раствора Sn (II) и водного раствора желатина. В рассмотренном примере выход продукта с размерами менее 100 нм составил 86%, а фракции менее 20 нм - 9%. Радиохимическая чистота фильтрата равна 90% и остается на этом уровне в течение 4-6 часов.

Пример 3. Реакционную смесь готовят так же, как и в примере 2, с тем отличием, что вводят 15 мкл свежеприготовленного раствора Sn (II) (концентрация 8 мг/мл по SnCl2·2Н2О). Полученную смесь нагревают на водяной бане (70-80 єС) в течение 30 мин с последующим охлаждением до комнатной температуры и фильтрацией через стерилизующий фильтр (0,22 мкм) в асептических условиях в стерильный флакон.

В рассмотренном примере введенное количество Sn (II) в пересчете на 1 мл приготовленной смеси равно 0,03 мг. Выход продукта с размерами менее 100 нм составил 87%, а фракции менее 20 нм - 8%. Радиохимическая чистота препарата равна 96% и остается на этом уровне в течение 4-6 часов.

Пример 4. Реакционную смесь готовят так же, как и в примере 2, с тем отличием, что вводят 20 мкл свежеприготовленного раствора Sn (II) (концентрация 8 мг/мл по SnCl2·2Н2О). Полученную смесь нагревают на водяной бане (70-80 єС) в течение 30 мин с последующим охлаждением до комнатной температуры и фильтрацией через стерилизующий фильтр (0,22 мкм) в асептических условиях в стерильный флакон.

В рассмотренном примере введенное количество Sn (II) в пересчете на 1 мл приготовленной смеси равно 0,04 мг. Выход продукта с размерами менее 100 нм составил 67%, а фракции менее 20 нм - 8%. Радиохимическая чистота препарата равна 94% и остается на этом уровне в течение 4-6 часов.

Из представленных примеров следует, что фильтрация исходной суспензии Fe@C (АДТ) перед проведением мечения технецием-99m через фильтр с диаметром пор 100 нм обеспечивает повышение выхода целевого наноколлоида 99mTc-Fe@C (АДТ) с размерами частиц менее 100 нм до 86-87%, а введение в состав реакционной смеси Sn (II) в количестве 0,02-0,03 мг из расчета на 1 мл смеси обеспечивает радиохимическую чистоту продукта на уровне 90-96%. Дальнейшее увеличение в реакционной смеси содержания Sn (II) до 0,04 мг/мл приводит к образованию более крупного коллоида и снижению выхода целевого наноколлоида 99mTc-Fe@C (АДТ) с размерами частиц менее 100 нм до 67%.

В целом предлагаемый способ позволяет получать меченный технецием-99m наноколлоидный препарат на основе модифицированного Fe@C (АДТ), пригодный для проведения гамма-сцинтиграфических исследований, о чем свидетельствует лимфосцинтиграмма (cм. чертеж), полученная через 1 час после введения радиофармпрепарата экспериментальному животному (крысе). Накопление в лимфоузле 3,5%, что на много превосходит стандартные требования (1,4-1,7%).

Способ получения меченного технецием-99m наноколлоида, включающий приготовление исходной суспензии наноколлоида, введение в нее элюата технеция-99m, затем введение аскорбиновой кислоты и желатина в количествах на 1 мл смеси: 0,20-0,25 мг и 2,5-4,0 мг соответственно, и определенного количества олова (II) хлорида дигидрата, последующий нагрев полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и проведение стерилизующей фильтрации, отличающийся тем, что в качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом, исходную суспензию готовят в 0,1% растворе додецилбензол сульфата натрия и пропускают ее через фильтр с диаметром пор 100 нм, а олова (II) хлорид дигидрат берут в количестве 0,02-0,03 мг из расчета на 1 мл смеси.
СПОСОБ ПОЛУЧЕНИЯ МЕЧЕННОГО ТЕХНЕЦИЕМ-99m НАНОКОЛЛОИДА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 195.
27.08.2015
№216.013.7541

Способ иммобилизации лекарственных препаратов на поверхность детонационных наноалмазов

Изобретение относится к химическим методам иммобилизации лекарственных препаратов на поверхность детонационных наноалмазов. Изобретение представляет способ иммобилизации лекарственного препарата на поверхность детонационных алмазов, основанный на получении суспензии детонационных алмазов и...
Тип: Изобретение
Номер охранного документа: 0002561592
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75eb

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева первого экономайзера,...
Тип: Изобретение
Номер охранного документа: 0002561776
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75ef

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор...
Тип: Изобретение
Номер охранного документа: 0002561780
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777d

Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для...
Тип: Изобретение
Номер охранного документа: 0002562178
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777f

Способ переработки пиритного огарка

Изобретение относится к способу переработки пиритного огарка. Способ включает смешивание пиритного огарка с хлоридом аммония и хлорирование при нагреве. Перед смешиванием предварительно проводят окислительный обжиг пиритного огарка. Хлорид аммония берут в избытке до 30% от...
Тип: Изобретение
Номер охранного документа: 0002562180
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77c1

Контактная система вакуумной дугогасительной камеры

Изобретение относится к вакуумным выключателям и может быть использовано в вакуумных дугогасительных камерах высокого напряжения. Контактная система вакуумной дугогасительной камеры содержит соосно расположенные подвижный и неподвижный контактные узлы, каждый из которых состоит из токоподвода в...
Тип: Изобретение
Номер охранного документа: 0002562246
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77eb

Способ конверсии отвального гексафторида урана в металлический уран

Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим...
Тип: Изобретение
Номер охранного документа: 0002562288
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7943

Торфосодержащая магнезиальная композиция

Изобретение относится к области производства строительных материалов и может быть использовано при изготовлении изделий, применяемых для малоэтажного строительства, а также для тепло- и звукоизоляции жилых, административных и промышленных зданий. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002562632
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7b31

Способ приготовления реагента для получения меченного технецием-99м доксорубицина

Изобретение относится к способу приготовления реагента для получения меченного технецием-99м доксорубицина. Способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком доксорубицина гидрохлорида с добавлением 1 мл буферного раствора pH 4,01,...
Тип: Изобретение
Номер охранного документа: 0002563134
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.81f7

Способ разрушения горных пород

Способ предназначен для дробления и измельчения электрическими импульсными разрядами горных пород, в том числе содержащих ограночное сырье. Горную породу размещают в жидкости. Жидкость заполняет корпус (3) с электродами (4, 7). На высоковольтный электрод (4) подают импульс высокого напряжения....
Тип: Изобретение
Номер охранного документа: 0002564868
Дата охранного документа: 10.10.2015
Показаны записи 141-150 из 307.
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fdc2

Способ определения координат целей и комплекс для его реализации

Изобретения относятся к области радиолокации. Достигаемый технический результат - стабильное, то есть непрерывное в течение длительного времени, определение всех координат целей в дальней зоне контроля при увеличении скрытности работы комплекса. Указанный результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002530808
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0453

Способ определения равновесности химического состава болотных вод от их гидродинамических условий

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени. В способе определяют закономерность...
Тип: Изобретение
Номер охранного документа: 0002532505
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04af

Способ визуализации ультразвуковой дефектоскопии трехмерного изделия

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно...
Тип: Изобретение
Номер охранного документа: 0002532597
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04b8

Устройство ультразвуковой томографии

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002532606
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.08b4

Способ определения частотных границ полезного сигнала и полос пропускания цифровых частотных фильтров

Изобретение относится к области цифровой обработки сигналов и может быть использовано для решения задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Техническим результатом является определение частотных границ полезного сигнала и полос пропускания...
Тип: Изобретение
Номер охранного документа: 0002533629
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cf1

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002534730
Дата охранного документа: 10.12.2014
+ добавить свой РИД